On the Steklov problem in a domain perforated along a part of the boundary
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1317-1342

Voir la notice de l'article provenant de la source Numdam

We study the asymptotic behavior of solutions and eigenelements to a 2-dimensional and 3-dimensional boundary value problem for the Laplace equation in a domain perforated along part of the boundary. On the boundary of holes we set the homogeneous Dirichlet boundary condition and the Steklov spectral condition on the mentioned part of the outer boundary of the domain. Assuming that the boundary microstructure is periodic, we construct the limit problem and prove the homogenization theorem.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016063
Classification : 35B40, 35D05, 35G30, 35Q35
Keywords: Homogenization, the Steklov spectral problem, asymptotic methods

Chechkin, Gregory A. 1 ; Gadyl’shin, Rustem R. 2 ; D’Apice, Ciro 3 ; De Maio, Umberto 4

1 Department of Differential Equations, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia.
2 Department of Mathematics and Statistics, Faculty of Physics and Mathematics, Bashkir State Pedagogical University, Ufa 450000, Russia.
3 Dipartimento di Ingegneria dell’Informazione e Matematica Applicata, Università degli Studi di Salerno, via Ponte don Melillo, 1, 84084 Fisciano (SA), Italia.
4 Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli Federico II, Complesso Monte S.Angelo – Edificio “T”, via Cintia 80126 Napoli, Italia.
@article{M2AN_2017__51_4_1317_0,
     author = {Chechkin, Gregory A. and Gadyl{\textquoteright}shin, Rustem R. and D{\textquoteright}Apice, Ciro and De Maio, Umberto},
     title = {On the {Steklov} problem in a domain perforated along a part of the boundary},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1317--1342},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016063},
     mrnumber = {3702415},
     zbl = {1378.35020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016063/}
}
TY  - JOUR
AU  - Chechkin, Gregory A.
AU  - Gadyl’shin, Rustem R.
AU  - D’Apice, Ciro
AU  - De Maio, Umberto
TI  - On the Steklov problem in a domain perforated along a part of the boundary
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1317
EP  - 1342
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016063/
DO  - 10.1051/m2an/2016063
LA  - en
ID  - M2AN_2017__51_4_1317_0
ER  - 
%0 Journal Article
%A Chechkin, Gregory A.
%A Gadyl’shin, Rustem R.
%A D’Apice, Ciro
%A De Maio, Umberto
%T On the Steklov problem in a domain perforated along a part of the boundary
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1317-1342
%V 51
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016063/
%R 10.1051/m2an/2016063
%G en
%F M2AN_2017__51_4_1317_0
Chechkin, Gregory A.; Gadyl’shin, Rustem R.; D’Apice, Ciro; De Maio, Umberto. On the Steklov problem in a domain perforated along a part of the boundary. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1317-1342. doi: 10.1051/m2an/2016063

Cité par Sources :