Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1245-1278

Voir la notice de l'article provenant de la source Numdam

Operator splitting methods combined with finite element spatial discretizations are studied for time-dependent nonlinear Schrödinger equations. In particular, the Schrödinger–Poisson equation under homogeneous Dirichlet boundary conditions on a finite domain is considered. A rigorous stability and error analysis is carried out for the second-order Strang splitting method and conforming polynomial finite element discretizations. For sufficiently regular solutions the classical orders of convergence are retained, that is, second-order convergence in time and polynomial convergence in space is proven. The established convergence result is confirmed and complemented by numerical illustrations.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016059
Classification : 65J15, 65L05, 65M60, 65M12, 65M15
Keywords: Nonlinear Schrödinger equations, operator splitting methods, finite element discretization, stability, local error, convergence

Auzinger, Winfried 1 ; Kassebacher, Thomas 2 ; Koch, Othmar 3 ; Thalhammer, Mechthild 2

1 Technische Universität Wien, Institut für Analysis und Scientific Computing, Wiedner Hauptstraße 8-10, 1040 Wien, Austria.
2 Leopold-Franzens Universität Innsbruck, Institut für Mathematik, Technikerstraße 13, 6020 Innsbruck, Austria.
3 Universität Wien, Fakultät für Mathematik, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria.
@article{M2AN_2017__51_4_1245_0,
     author = {Auzinger, Winfried and Kassebacher, Thomas and Koch, Othmar and Thalhammer, Mechthild},
     title = {Convergence of a {Strang} splitting finite element discretization for the {Schr\"odinger{\textendash}Poisson} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1245--1278},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016059},
     zbl = {1379.65071},
     mrnumber = {3702412},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016059/}
}
TY  - JOUR
AU  - Auzinger, Winfried
AU  - Kassebacher, Thomas
AU  - Koch, Othmar
AU  - Thalhammer, Mechthild
TI  - Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1245
EP  - 1278
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016059/
DO  - 10.1051/m2an/2016059
LA  - en
ID  - M2AN_2017__51_4_1245_0
ER  - 
%0 Journal Article
%A Auzinger, Winfried
%A Kassebacher, Thomas
%A Koch, Othmar
%A Thalhammer, Mechthild
%T Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1245-1278
%V 51
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016059/
%R 10.1051/m2an/2016059
%G en
%F M2AN_2017__51_4_1245_0
Auzinger, Winfried; Kassebacher, Thomas; Koch, Othmar; Thalhammer, Mechthild. Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1245-1278. doi: 10.1051/m2an/2016059

Cité par Sources :