Voir la notice de l'article provenant de la source Numdam
Operator splitting methods combined with finite element spatial discretizations are studied for time-dependent nonlinear Schrödinger equations. In particular, the Schrödinger–Poisson equation under homogeneous Dirichlet boundary conditions on a finite domain is considered. A rigorous stability and error analysis is carried out for the second-order Strang splitting method and conforming polynomial finite element discretizations. For sufficiently regular solutions the classical orders of convergence are retained, that is, second-order convergence in time and polynomial convergence in space is proven. The established convergence result is confirmed and complemented by numerical illustrations.
Auzinger, Winfried 1 ; Kassebacher, Thomas 2 ; Koch, Othmar 3 ; Thalhammer, Mechthild 2
@article{M2AN_2017__51_4_1245_0, author = {Auzinger, Winfried and Kassebacher, Thomas and Koch, Othmar and Thalhammer, Mechthild}, title = {Convergence of a {Strang} splitting finite element discretization for the {Schr\"odinger{\textendash}Poisson} equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1245--1278}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/m2an/2016059}, zbl = {1379.65071}, mrnumber = {3702412}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016059/} }
TY - JOUR AU - Auzinger, Winfried AU - Kassebacher, Thomas AU - Koch, Othmar AU - Thalhammer, Mechthild TI - Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1245 EP - 1278 VL - 51 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016059/ DO - 10.1051/m2an/2016059 LA - en ID - M2AN_2017__51_4_1245_0 ER -
%0 Journal Article %A Auzinger, Winfried %A Kassebacher, Thomas %A Koch, Othmar %A Thalhammer, Mechthild %T Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1245-1278 %V 51 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016059/ %R 10.1051/m2an/2016059 %G en %F M2AN_2017__51_4_1245_0
Auzinger, Winfried; Kassebacher, Thomas; Koch, Othmar; Thalhammer, Mechthild. Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1245-1278. doi: 10.1051/m2an/2016059
Cité par Sources :