Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1197-1221

Voir la notice de l'article provenant de la source Numdam

Discretization methods such as finite differences or finite elements were usually employed to provide high fidelity solution approximations for reduced order modeling of parameterized partial differential equations. In this paper, a novel discretization technique-Isogeometric Analysis (IGA) is used in combination with proper orthogonal decomposition (POD) for model order reduction of the time parameterized acoustic wave equations. We propose a new fully discrete IGA-Newmark-POD approximation and we analyze the associated numerical error, which features three components due to spatial discretization by IGA, time discretization with the Newmark scheme, and modes truncation by POD. We prove stability and convergence. Numerical examples are presented to show the effectiveness and accuracy of IGA-based POD techniques for the model order reduction of the acoustic wave equation.

DOI : 10.1051/m2an/2016056
Classification : 65M12, 65M15, 65M60
Keywords: Isogeometric analysis, proper orthogonal decomposition, reduced order modeling, acoustic wave equation

Zhu, Shengfeng 1 ; Dedè, Luca 2 ; Quarteroni, Alfio 2, 3

1 Department of Mathematics and Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China.
2 CMCS-Chair of Modeling and Scientific Computing, MATHICSE-Mathematics Institute of Computational Science and Engineering, EPFL-École Polytechnique Fédérale de Lausanne, Station 8, 1015, Lausanne, Switzerland.
3 MOX-Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy.
@article{M2AN_2017__51_4_1197_0,
     author = {Zhu, Shengfeng and Ded\`e, Luca and Quarteroni, Alfio},
     title = {Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1197--1221},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016056},
     mrnumber = {3702410},
     zbl = {1381.65086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016056/}
}
TY  - JOUR
AU  - Zhu, Shengfeng
AU  - Dedè, Luca
AU  - Quarteroni, Alfio
TI  - Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1197
EP  - 1221
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016056/
DO  - 10.1051/m2an/2016056
LA  - en
ID  - M2AN_2017__51_4_1197_0
ER  - 
%0 Journal Article
%A Zhu, Shengfeng
%A Dedè, Luca
%A Quarteroni, Alfio
%T Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1197-1221
%V 51
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016056/
%R 10.1051/m2an/2016056
%G en
%F M2AN_2017__51_4_1197_0
Zhu, Shengfeng; Dedè, Luca; Quarteroni, Alfio. Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1197-1221. doi: 10.1051/m2an/2016056

Cité par Sources :