Voir la notice de l'article provenant de la source Numdam
We propose and analyze a generalized finite element method designed for linear quasistatic thermoelastic systems with spatial multiscale coefficients. The method is based on the local orthogonal decomposition technique introduced by Målqvist and Peterseim (Math. Comp. 83 (2014) 2583–2603). We prove convergence of optimal order, independent of the derivatives of the coefficients, in the spatial -norm. The theoretical results are confirmed by numerical examples.
Målqvist, Axel 1 ; Persson, Anna 1
@article{M2AN_2017__51_4_1145_0, author = {M\r{a}lqvist, Axel and Persson, Anna}, title = {A generalized finite element method for linear thermoelasticity}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1145--1171}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/m2an/2016054}, mrnumber = {3702408}, zbl = {1397.74191}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016054/} }
TY - JOUR AU - Målqvist, Axel AU - Persson, Anna TI - A generalized finite element method for linear thermoelasticity JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1145 EP - 1171 VL - 51 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016054/ DO - 10.1051/m2an/2016054 LA - en ID - M2AN_2017__51_4_1145_0 ER -
%0 Journal Article %A Målqvist, Axel %A Persson, Anna %T A generalized finite element method for linear thermoelasticity %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1145-1171 %V 51 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016054/ %R 10.1051/m2an/2016054 %G en %F M2AN_2017__51_4_1145_0
Målqvist, Axel; Persson, Anna. A generalized finite element method for linear thermoelasticity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1145-1171. doi: 10.1051/m2an/2016054
Cité par Sources :