Domain decomposition preconditioners for the discontinuous Petrov–Galerkin method
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 1021-1044

Voir la notice de l'article provenant de la source Numdam

In this paper, we design some efficient domain decomposition preconditioners for the discontinuous Petrov–Galerkin (DPG) method. Due to the special properties of the DPG method, the boundary condition becomes crucial in both of its application and analysis. We mainly focus on one of the boundary conditions: the Robin boundary condition, which actually appears in some useful model problems like the Helmholtz equation. We first design a two-level additive Schwarz preconditioner for the Poisson equation with a Robin boundary condition and give a rigorous condition number estimate for the preconditioned algebraic system. Moreover we also construct an additive Schwarz preconditioner for solving the Helmholtz equation. Numerical results show that the condition number of the preconditioned system is independent of wavenumber ω and mesh size h.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016050
Classification : 65N30, 65N22, 65N55
Keywords: DPG, domain decomposition, additive Schwarz preconditioner, Robin boundary condition, Helmholtz equation

Li, Xiang 1 ; Xu, Xuejun 2

1 LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, P.R. China.
2 School of Mathematical Sciences, Tongji University, and LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, P.R. China.
@article{M2AN_2017__51_3_1021_0,
     author = {Li, Xiang and Xu, Xuejun},
     title = {Domain decomposition preconditioners for the discontinuous {Petrov{\textendash}Galerkin} method},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1021--1044},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {3},
     year = {2017},
     doi = {10.1051/m2an/2016050},
     mrnumber = {3666655},
     zbl = {1373.65084},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016050/}
}
TY  - JOUR
AU  - Li, Xiang
AU  - Xu, Xuejun
TI  - Domain decomposition preconditioners for the discontinuous Petrov–Galerkin method
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1021
EP  - 1044
VL  - 51
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016050/
DO  - 10.1051/m2an/2016050
LA  - en
ID  - M2AN_2017__51_3_1021_0
ER  - 
%0 Journal Article
%A Li, Xiang
%A Xu, Xuejun
%T Domain decomposition preconditioners for the discontinuous Petrov–Galerkin method
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1021-1044
%V 51
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016050/
%R 10.1051/m2an/2016050
%G en
%F M2AN_2017__51_3_1021_0
Li, Xiang; Xu, Xuejun. Domain decomposition preconditioners for the discontinuous Petrov–Galerkin method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 1021-1044. doi: 10.1051/m2an/2016050

Cité par Sources :