Low-thrust Lyapunov to Lyapunov and Halo to Halo missions with L 2 -minimization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 965-996

Voir la notice de l'article provenant de la source Numdam

In this work, we develop a new method to design energy minimum low-thrust missions (L 2 -minimization). In the Circular Restricted Three Body Problem, the knowledge of invariant manifolds helps us initialize an indirect method solving a transfer mission between periodic Lyapunov orbits. Indeed, using the PMP, the optimal control problem is solved using Newton-like algorithms finding the zero of a shooting function. To compute a Lyapunov to Lyapunov mission, we first compute an admissible trajectory using a heteroclinic orbit between the two periodic orbits. It is then used to initialize a multiple shooting method in order to release the constraint. We finally optimize the terminal points on the periodic orbits. Moreover, we use continuation methods on position and on thrust, in order to gain robustness. A more general Halo to Halo mission, with different energies, is computed in the last section without heteroclinic orbits but using invariant manifolds to initialize shooting methods with a similar approach.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016044
Classification : 49M05, 70F07, 49M15
Keywords: Three body problem, optimal control, low-thrust transfer, Lyapunov orbit, Halo orbit, continuation method

Chupin, Maxime 1, 2 ; Haberkorn, Thomas 3 ; Trélat, Emmanuel 1

1 Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France.
2 Airbus Defence and Space, 66 route de Verneuil, BP 3002, 78133 Les Mureaux cedex, France.
3 Université d’Orléans, Fédération Denis Poisson, Laboratoire MAPMO, UMR CNRS 7349, route de Chartres, 45067 Orléans cedex 2, France.
@article{M2AN_2017__51_3_965_0,
     author = {Chupin, Maxime and Haberkorn, Thomas and Tr\'elat, Emmanuel},
     title = {Low-thrust {Lyapunov} to {Lyapunov} and {Halo} to {Halo} missions with $L^{2}$-minimization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {965--996},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {3},
     year = {2017},
     doi = {10.1051/m2an/2016044},
     mrnumber = {3666653},
     zbl = {1370.49024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016044/}
}
TY  - JOUR
AU  - Chupin, Maxime
AU  - Haberkorn, Thomas
AU  - Trélat, Emmanuel
TI  - Low-thrust Lyapunov to Lyapunov and Halo to Halo missions with $L^{2}$-minimization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 965
EP  - 996
VL  - 51
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016044/
DO  - 10.1051/m2an/2016044
LA  - en
ID  - M2AN_2017__51_3_965_0
ER  - 
%0 Journal Article
%A Chupin, Maxime
%A Haberkorn, Thomas
%A Trélat, Emmanuel
%T Low-thrust Lyapunov to Lyapunov and Halo to Halo missions with $L^{2}$-minimization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 965-996
%V 51
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016044/
%R 10.1051/m2an/2016044
%G en
%F M2AN_2017__51_3_965_0
Chupin, Maxime; Haberkorn, Thomas; Trélat, Emmanuel. Low-thrust Lyapunov to Lyapunov and Halo to Halo missions with $L^{2}$-minimization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 965-996. doi: 10.1051/m2an/2016044

Cité par Sources :