Voir la notice de l'article provenant de la source Numdam
We consider a contact problem in thermoviscoelastic diffusion theory in one space dimension with second sound. The contact is modeled by the Signorini’s condition and the stress-strain constitutive equation is of Kelvin−Voigt type. The thermal and diffusion disturbances are modeled by Cattaneo’s law for heat and diffusion equations to remove the physical paradox of infinite propagation speed in the classical theory within Fourier’s law. The system of equations is a coupling of a hyperbolic equation with four parabolic equations. It poses some new mathematical difficulties due to the nonlinear boundary conditions and the lack of regularity. We prove that the viscoelastic term provides additional regularity leading to the existence of weak solutions. Then, fully discrete approximations to a penalized problem are considered by using the finite element method. A stability property is shown, which leads to a discrete version of the energy decay property. A priori error analysis is then provided, from which the linear convergence of the algorithm is derived. Finally, we give some computational results.
Aouadi, Moncef 1 ; Copetti, Maria I.M. 2 ; Fernández, José R. 3
@article{M2AN_2017__51_3_759_0, author = {Aouadi, Moncef and Copetti, Maria I.M. and Fern\'andez, Jos\'e R.}, title = {A contact problem in thermoviscoelastic diffusion theory with second sound}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {759--796}, publisher = {EDP-Sciences}, volume = {51}, number = {3}, year = {2017}, doi = {10.1051/m2an/2016039}, mrnumber = {3666646}, zbl = {1368.74056}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016039/} }
TY - JOUR AU - Aouadi, Moncef AU - Copetti, Maria I.M. AU - Fernández, José R. TI - A contact problem in thermoviscoelastic diffusion theory with second sound JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 759 EP - 796 VL - 51 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016039/ DO - 10.1051/m2an/2016039 LA - en ID - M2AN_2017__51_3_759_0 ER -
%0 Journal Article %A Aouadi, Moncef %A Copetti, Maria I.M. %A Fernández, José R. %T A contact problem in thermoviscoelastic diffusion theory with second sound %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 759-796 %V 51 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016039/ %R 10.1051/m2an/2016039 %G en %F M2AN_2017__51_3_759_0
Aouadi, Moncef; Copetti, Maria I.M.; Fernández, José R. A contact problem in thermoviscoelastic diffusion theory with second sound. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 759-796. doi: 10.1051/m2an/2016039
Cité par Sources :