Superconvergence of Discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 467-486

Voir la notice de l'article provenant de la source Numdam

In this paper, we study superconvergence properties of the discontinuous Galerkin method using upwind-biased numerical fluxes for one-dimensional linear hyperbolic equations. A (2k+1)th order superconvergence rate of the DG approximation at the numerical fluxes and for the cell average is obtained under quasi-uniform meshes and some suitable initial discretization, when piecewise polynomials of degree k are used. Furthermore, surprisingly, we find that the derivative and function value approximation of the DG solution are superconvergent at a class of special points, with an order k+1 and k+2, respectively. These superconvergent points can be regarded as the generalized Radau points. All theoretical findings are confirmed by numerical experiments.

DOI : 10.1051/m2an/2016026
Classification : 65M15, 65M60, 65N30
Keywords: Discontinuous Galerkin methods, superconvergence, generalized Radau points, upwind-biased fluxes

Cao, Waixiang 1 ; Li, Dongfang 2 ; Yang, Yang 3 ; Zhang, Zhimin 1, 4

1 Beijing Computational Science Research Center, Zhongguancun Software Park II, No. 10 West Dongbeiwang Road, Haidian District, Beijing 100094, P.R. China.
2 School of Mathematics and Statistics, Huazhong University of Science and Technology, 1037 Luoyu Rd, Hongshan, Wuhan, Hubei 430074, P.R. China.
3 Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
4 Department of Mathematics, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA.
@article{M2AN_2017__51_2_467_0,
     author = {Cao, Waixiang and Li, Dongfang and Yang, Yang and Zhang, Zhimin},
     title = {Superconvergence of {Discontinuous} {Galerkin} methods based on upwind-biased fluxes for {1D} linear hyperbolic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {467--486},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {2},
     year = {2017},
     doi = {10.1051/m2an/2016026},
     mrnumber = {3626407},
     zbl = {1367.65127},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016026/}
}
TY  - JOUR
AU  - Cao, Waixiang
AU  - Li, Dongfang
AU  - Yang, Yang
AU  - Zhang, Zhimin
TI  - Superconvergence of Discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 467
EP  - 486
VL  - 51
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016026/
DO  - 10.1051/m2an/2016026
LA  - en
ID  - M2AN_2017__51_2_467_0
ER  - 
%0 Journal Article
%A Cao, Waixiang
%A Li, Dongfang
%A Yang, Yang
%A Zhang, Zhimin
%T Superconvergence of Discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 467-486
%V 51
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016026/
%R 10.1051/m2an/2016026
%G en
%F M2AN_2017__51_2_467_0
Cao, Waixiang; Li, Dongfang; Yang, Yang; Zhang, Zhimin. Superconvergence of Discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 467-486. doi: 10.1051/m2an/2016026

Cité par Sources :