Error estimates for a numerical method for the compressible Navier–Stokes system on sufficiently smooth domains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 279-319

Voir la notice de l'article provenant de la source Numdam

We derive an a priori error estimate for the numerical solution obtained by time and space discretization by the finite volume/finite element method of the barotropic Navier–Stokes equations. The numerical solution on a convenient polyhedral domain approximating a sufficiently smooth bounded domain is compared with an exact solution of the barotropic Navier–Stokes equations with a bounded density. The result is unconditional in the sense that there are no assumed bounds on the numerical solution. It is obtained by the combination of discrete relative energy inequality derived in [T. Gallouët, R. Herbin, D. Maltese and A. Novotný, IMA J. Numer. Anal. 36 (2016) 543–592.] and several recent results in the theory of compressible Navier–Stokes equations concerning blow up criterion established in [Y. Sun, C. Wang and Z. Zhang, J. Math. Pures Appl. 95 (2011) 36–47] and weak strong uniqueness principle established in [E. Feireisl, B.J. Jin and A. Novotný, J. Math. Fluid Mech. 14 (2012) 717–730].

DOI : 10.1051/m2an/2016022
Classification : 35Q30, 65N12, 65N30, 76N10, 76N15, 76M10, 76M12
Keywords: Navier–Stokes system, finite element numerical method, finite volume numerical method, error estimates

Feireisl, Eduard 1, 2 ; Hošek, Radim 1, 2 ; Maltese, David 1, 2 ; Novotný, Antonín 1, 2

1 Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic.
2 Institut Mathématiques de Toulon, EA2134, University of Toulon, BP 20132, 839 57 La Garde, France.
@article{M2AN_2017__51_1_279_0,
     author = {Feireisl, Eduard and Ho\v{s}ek, Radim and Maltese, David and Novotn\'y, Anton{\'\i}n},
     title = {Error estimates for a numerical method for the compressible {Navier{\textendash}Stokes} system on sufficiently smooth domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {279--319},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/m2an/2016022},
     zbl = {1360.35144},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016022/}
}
TY  - JOUR
AU  - Feireisl, Eduard
AU  - Hošek, Radim
AU  - Maltese, David
AU  - Novotný, Antonín
TI  - Error estimates for a numerical method for the compressible Navier–Stokes system on sufficiently smooth domains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 279
EP  - 319
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016022/
DO  - 10.1051/m2an/2016022
LA  - en
ID  - M2AN_2017__51_1_279_0
ER  - 
%0 Journal Article
%A Feireisl, Eduard
%A Hošek, Radim
%A Maltese, David
%A Novotný, Antonín
%T Error estimates for a numerical method for the compressible Navier–Stokes system on sufficiently smooth domains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 279-319
%V 51
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016022/
%R 10.1051/m2an/2016022
%G en
%F M2AN_2017__51_1_279_0
Feireisl, Eduard; Hošek, Radim; Maltese, David; Novotný, Antonín. Error estimates for a numerical method for the compressible Navier–Stokes system on sufficiently smooth domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 279-319. doi: 10.1051/m2an/2016022

Cité par Sources :