Generalized finite element methods for quadratic eigenvalue problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 147-163

Voir la notice de l'article provenant de la source Numdam

We consider a large-scale quadratic eigenvalue problem (QEP), formulated using P1 finite elements on a fine scale reference mesh. This model describes damped vibrations in a structural mechanical system. In particular we focus on problems with rapid material data variation, e.g., composite materials. We construct a low dimensional generalized finite element (GFE) space based on the localized orthogonal decomposition (LOD) technique. The construction involves the (parallel) solution of independent localized linear Poisson-type problems. The GFE space is used to compress the large-scale algebraic QEP to a much smaller one with a similar modeling accuracy. The small scale QEP can then be solved by standard techniques at a significantly reduced computational cost. We prove convergence with rate for the proposed method and numerical experiments confirm our theoretical findings.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016019
Classification : 65N30, 65N25, 65N15
Keywords: Quadratic eigenvalue problem, finite element, localized orthogonal decomposition

Målqvist, Axel 1 ; Peterseim, Daniel 2

1 Department of Mathematics, Chalmers University of Technology and University of Gothenburg, Sweden.
2 Insitute for Numerical Simulation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.
@article{M2AN_2017__51_1_147_0,
     author = {M\r{a}lqvist, Axel and Peterseim, Daniel},
     title = {Generalized finite element methods for quadratic eigenvalue problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {147--163},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/m2an/2016019},
     mrnumber = {3601004},
     zbl = {1360.65270},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016019/}
}
TY  - JOUR
AU  - Målqvist, Axel
AU  - Peterseim, Daniel
TI  - Generalized finite element methods for quadratic eigenvalue problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 147
EP  - 163
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016019/
DO  - 10.1051/m2an/2016019
LA  - en
ID  - M2AN_2017__51_1_147_0
ER  - 
%0 Journal Article
%A Målqvist, Axel
%A Peterseim, Daniel
%T Generalized finite element methods for quadratic eigenvalue problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 147-163
%V 51
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016019/
%R 10.1051/m2an/2016019
%G en
%F M2AN_2017__51_1_147_0
Målqvist, Axel; Peterseim, Daniel. Generalized finite element methods for quadratic eigenvalue problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 147-163. doi: 10.1051/m2an/2016019

Cité par Sources :