Voir la notice de l'article provenant de la source Numdam
We apply the concept of an M-decomposition introduced in Part I to systematically construct local spaces defining superconvergent hybridizable discontinuous Galerkin methods, and their companion sandwiching mixed methods. This is done in the framework of steady-state diffusion problems for the h- and p-versions of the methods for general polygonal meshes in two-space dimensions.
Cockburn, Bernardo 1 ; Fu, Guosheng 1
@article{M2AN_2017__51_1_165_0, author = {Cockburn, Bernardo and Fu, Guosheng}, title = {Superconvergence by $M$-decompositions. {Part} {II:} {Construction} of two-dimensional finite elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {165--186}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/m2an/2016016}, mrnumber = {3601005}, zbl = {1412.65205}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016016/} }
TY - JOUR AU - Cockburn, Bernardo AU - Fu, Guosheng TI - Superconvergence by $M$-decompositions. Part II: Construction of two-dimensional finite elements JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 165 EP - 186 VL - 51 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016016/ DO - 10.1051/m2an/2016016 LA - en ID - M2AN_2017__51_1_165_0 ER -
%0 Journal Article %A Cockburn, Bernardo %A Fu, Guosheng %T Superconvergence by $M$-decompositions. Part II: Construction of two-dimensional finite elements %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 165-186 %V 51 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016016/ %R 10.1051/m2an/2016016 %G en %F M2AN_2017__51_1_165_0
Cockburn, Bernardo; Fu, Guosheng. Superconvergence by $M$-decompositions. Part II: Construction of two-dimensional finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 165-186. doi: 10.1051/m2an/2016016
Cité par Sources :