A convex analysis approach to multi-material topology optimization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1917-1936

Voir la notice de l'article provenant de la source Numdam

This work is concerned with optimal control of partial differential equations where the control enters the state equation as a coefficient and should take on values only from a given discrete set of values corresponding to available materials. A “multi-bang” framework based on convex analysis is proposed where the desired piecewise constant structure is incorporated using a convex penalty term. Together with a suitable tracking term, this allows formulating the problem of optimizing the topology of the distribution of material parameters as minimizing a convex functional subject to a (nonlinear) equality constraint. The applicability of this approach is validated for two model problems where the control enters as a potential and a diffusion coefficient, respectively. This is illustrated in both cases by numerical results based on a semi-smooth Newton method.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016012
Classification : 49Q10, 49K20, 49M15
Keywords: Topology optimization, convex analysis, convexification, semi-smooth Newton method

Clason, Christian 1 ; Kunisch, Karl 2, 3

1 Faculty of Mathematics, University Duisburg-Essen, 45117 Essen, Germany.
2 Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria.
3 Radon Institute, Austrian Academy of Sciences, Linz, Austria.
@article{M2AN_2016__50_6_1917_0,
     author = {Clason, Christian and Kunisch, Karl},
     title = {A convex analysis approach to multi-material topology optimization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1917--1936},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {6},
     year = {2016},
     doi = {10.1051/m2an/2016012},
     zbl = {1354.49092},
     mrnumber = {3580127},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016012/}
}
TY  - JOUR
AU  - Clason, Christian
AU  - Kunisch, Karl
TI  - A convex analysis approach to multi-material topology optimization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1917
EP  - 1936
VL  - 50
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016012/
DO  - 10.1051/m2an/2016012
LA  - en
ID  - M2AN_2016__50_6_1917_0
ER  - 
%0 Journal Article
%A Clason, Christian
%A Kunisch, Karl
%T A convex analysis approach to multi-material topology optimization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1917-1936
%V 50
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016012/
%R 10.1051/m2an/2016012
%G en
%F M2AN_2016__50_6_1917_0
Clason, Christian; Kunisch, Karl. A convex analysis approach to multi-material topology optimization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1917-1936. doi: 10.1051/m2an/2016012

Cité par Sources :