A posteriori error analysis for a viscous flow-transport problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1789-1816

Voir la notice de l'article provenant de la source Numdam

In this paper we develop an a posteriori error analysis for an augmented mixed-primal finite element approximation of a stationary viscous flow and transport problem. The governing system corresponds to a scalar, nonlinear convection-diffusion equation coupled with a Stokes problem with variable viscosity, and it serves as a prototype model for sedimentation-consolidation processes and other phenomena where the transport of species concentration within a viscous fluid is of interest. The solvability of the continuous mixed-primal formulation along with a priori error estimates for a finite element scheme using Raviart−Thomas spaces of order k for the stress approximation, and continuous piecewise polynomials of degree k+1 for both velocity and concentration, have been recently established in [M. Alvarez et al., ESAIM: M2AN 49 (2015) 1399–1427]. Here we derive two efficient and reliable residual-based a posteriori error estimators for that scheme: for the first estimator, and under suitable assumptions on the domain, we apply a Helmholtz decomposition and exploit local approximation properties of the Clément interpolant and Raviart−Thomas operator to show its reliability. On the other hand, its efficiency follows from inverse inequalities and the localization arguments based on triangle-bubble and edge-bubble functions. Secondly, an alternative error estimator is proposed, whose reliability can be proved without resorting to Helmholtz decompositions. Our theoretical results are then illustrated via some numerical examples, highlighting also the performance of the scheme and properties of the proposed error indicators.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016007
Classification : 65N30, 65N12, 76R05, 76D07, 65N15
Keywords: Stokes-transport coupled problem, viscous flow, augmented mixed-primal formulation, sedimentation-consolidation process, finite element methods, a posteriori error analysis

Alvarez, Mario 1, 2 ; Gatica, Gabriel N. 3 ; Ruiz-Baier, Ricardo 4

1 Sección de Matemática, Sede de Occidente, Universidad de Costa Rica, San Ramón de Alajuela, Costa Rica.
2 Present address: CI2 MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
3 CI2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
4 Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG Oxford, UK.
@article{M2AN_2016__50_6_1789_0,
     author = {Alvarez, Mario and Gatica, Gabriel N. and Ruiz-Baier, Ricardo},
     title = {A posteriori error analysis for a viscous flow-transport problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1789--1816},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {6},
     year = {2016},
     doi = {10.1051/m2an/2016007},
     zbl = {1416.65430},
     mrnumber = {3580122},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016007/}
}
TY  - JOUR
AU  - Alvarez, Mario
AU  - Gatica, Gabriel N.
AU  - Ruiz-Baier, Ricardo
TI  - A posteriori error analysis for a viscous flow-transport problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1789
EP  - 1816
VL  - 50
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016007/
DO  - 10.1051/m2an/2016007
LA  - en
ID  - M2AN_2016__50_6_1789_0
ER  - 
%0 Journal Article
%A Alvarez, Mario
%A Gatica, Gabriel N.
%A Ruiz-Baier, Ricardo
%T A posteriori error analysis for a viscous flow-transport problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1789-1816
%V 50
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016007/
%R 10.1051/m2an/2016007
%G en
%F M2AN_2016__50_6_1789_0
Alvarez, Mario; Gatica, Gabriel N.; Ruiz-Baier, Ricardo. A posteriori error analysis for a viscous flow-transport problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1789-1816. doi: 10.1051/m2an/2016007

Cité par Sources :