Semi-Lagrangian discontinuous Galerkin schemes for some first- and second-order partial differential equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1699-1730

Voir la notice de l'article provenant de la source Numdam

Explicit, unconditionally stable, high-order schemes for the approximation of some first- and second-order linear, time-dependent partial differential equations (PDEs) are proposed. The schemes are based on a weak formulation of a semi-Lagrangian scheme using discontinuous Galerkin (DG) elements. It follows the ideas of the recent works of Crouseilles et al. [N. Crouseilles, M. Mehrenberger and F. Vecil, In CEMRACS’10 research achievements: numerical modeling of fusion. ESAIM Proc. 32 (2011) 211–230], Rossmanith and Seal [J.A. Rossmanith and D.C. Seal, J. Comput. Phys. 230 (2011) 6203–6232], for first-order equations, based on exact integration, quadrature rules, and splitting techniques for the treatment of two-dimensional PDEs. For second-order PDEs the idea of the scheme is a blending between weak Taylor approximations and projection on a DG basis. New and sharp error estimates are obtained for the fully discrete schemes and for variable coefficients. In particular we obtain high-order schemes, unconditionally stable and convergent, in the case of linear first-order PDEs, or linear second-order PDEs with constant coefficients. In the case of non-constant coefficients, we construct, in some particular cases, “almost” unconditionally stable second-order schemes and give precise convergence results. The schemes are tested on several academic examples.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016004
Classification : 65M12, 65M15, 65M25, 65M60
Keywords: Semi-Lagrangian scheme, weak Taylor scheme, discontinuous Galerkin elements, method of characteristics, high-order methods, advection diffusion equations

Bokanowski, Olivier 1, 2 ; Simarmata, Giorevinus 3

1 Laboratoire Jacques-Louis Lions, Université Paris-Diderot (Paris 7), 75205 Paris cedex 13, France.
2 Unité de Mathématiques Appliquées, ENSTA ParisTech, 91120 Palaiseau, France.
3 Finance RI Department – Rabobank International, Europalaan 44, 3526 KS, Utrecht, The Netherlands.
@article{M2AN_2016__50_6_1699_0,
     author = {Bokanowski, Olivier and Simarmata, Giorevinus},
     title = {Semi-Lagrangian discontinuous {Galerkin} schemes for some first- and second-order partial differential equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1699--1730},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {6},
     year = {2016},
     doi = {10.1051/m2an/2016004},
     zbl = {1357.65171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016004/}
}
TY  - JOUR
AU  - Bokanowski, Olivier
AU  - Simarmata, Giorevinus
TI  - Semi-Lagrangian discontinuous Galerkin schemes for some first- and second-order partial differential equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1699
EP  - 1730
VL  - 50
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016004/
DO  - 10.1051/m2an/2016004
LA  - en
ID  - M2AN_2016__50_6_1699_0
ER  - 
%0 Journal Article
%A Bokanowski, Olivier
%A Simarmata, Giorevinus
%T Semi-Lagrangian discontinuous Galerkin schemes for some first- and second-order partial differential equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1699-1730
%V 50
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016004/
%R 10.1051/m2an/2016004
%G en
%F M2AN_2016__50_6_1699_0
Bokanowski, Olivier; Simarmata, Giorevinus. Semi-Lagrangian discontinuous Galerkin schemes for some first- and second-order partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1699-1730. doi: 10.1051/m2an/2016004

Cité par Sources :