Energy conservative finite element semi-discretization for vibro-impacts of plates on rigid obstacles
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1585-1613

Voir la notice de l'article provenant de la source Numdam

Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of vibro-impact of plates between rigid obstacles with non-penetration Signorini’s conditions. To this aim, the dynamical Kirchhoff–Love plate model is considered and an extension to plates of the singular dynamic method, introduced by Renard and previously adapted to beams by Pozzolini and Salaün, is described. A particular emphasis is given in the use of an adapted Newmark scheme in which intervene a discrete restitution coefficient. Finally, various numerical results are presented and energy conservation capabilities of several numerical schemes are investigated and discussed.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015094
Classification : 35L85, 65M12, 74H15, 74H45
Keywords: Variational inequalities, finite element method, elastic plates, dynamics, unilateral constraints

Pozzolini, Cédric 1 ; Renard, Yves 1 ; Salaün, Michel 2

1 Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, 69621 Villeurbanne, France.
2 Université de Toulouse, CNRS, ISAE-SUPAERO, Institut Clément Ader (ICA), 31077 Toulouse cedex 4, France.
@article{M2AN_2016__50_6_1585_0,
     author = {Pozzolini, C\'edric and Renard, Yves and Sala\"un, Michel},
     title = {Energy conservative finite element semi-discretization for vibro-impacts of plates on rigid obstacles},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1585--1613},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {6},
     year = {2016},
     doi = {10.1051/m2an/2015094},
     mrnumber = {3580115},
     zbl = {1388.74107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015094/}
}
TY  - JOUR
AU  - Pozzolini, Cédric
AU  - Renard, Yves
AU  - Salaün, Michel
TI  - Energy conservative finite element semi-discretization for vibro-impacts of plates on rigid obstacles
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1585
EP  - 1613
VL  - 50
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015094/
DO  - 10.1051/m2an/2015094
LA  - en
ID  - M2AN_2016__50_6_1585_0
ER  - 
%0 Journal Article
%A Pozzolini, Cédric
%A Renard, Yves
%A Salaün, Michel
%T Energy conservative finite element semi-discretization for vibro-impacts of plates on rigid obstacles
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1585-1613
%V 50
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015094/
%R 10.1051/m2an/2015094
%G en
%F M2AN_2016__50_6_1585_0
Pozzolini, Cédric; Renard, Yves; Salaün, Michel. Energy conservative finite element semi-discretization for vibro-impacts of plates on rigid obstacles. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1585-1613. doi: 10.1051/m2an/2015094

Cité par Sources :