Voir la notice de l'article provenant de la source Numdam
We present higher-order piecewise continuous finite element methods for solving a class of interface problems in two dimensions. The method is based on correction terms added to the right-hand side in the standard variational formulation of the problem. We prove optimal error estimates of the methods on general quasi-uniform and shape regular meshes in maximum norms. In addition, we apply the method to a Stokes interface problem, adding correction terms for the velocity and the pressure, obtaining optimal convergence results.
Guzmán, Johnny 1 ; Sánchez, Manuel A. 1 ; Sarkis, Marcus 2
@article{M2AN_2016__50_5_1561_0, author = {Guzm\'an, Johnny and S\'anchez, Manuel A. and Sarkis, Marcus}, title = {Higher-order finite element methods for elliptic problems with interfaces}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1561--1583}, publisher = {EDP-Sciences}, volume = {50}, number = {5}, year = {2016}, doi = {10.1051/m2an/2015093}, mrnumber = {3554552}, zbl = {1353.65120}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015093/} }
TY - JOUR AU - Guzmán, Johnny AU - Sánchez, Manuel A. AU - Sarkis, Marcus TI - Higher-order finite element methods for elliptic problems with interfaces JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 1561 EP - 1583 VL - 50 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015093/ DO - 10.1051/m2an/2015093 LA - en ID - M2AN_2016__50_5_1561_0 ER -
%0 Journal Article %A Guzmán, Johnny %A Sánchez, Manuel A. %A Sarkis, Marcus %T Higher-order finite element methods for elliptic problems with interfaces %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 1561-1583 %V 50 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015093/ %R 10.1051/m2an/2015093 %G en %F M2AN_2016__50_5_1561_0
Guzmán, Johnny; Sánchez, Manuel A.; Sarkis, Marcus. Higher-order finite element methods for elliptic problems with interfaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1561-1583. doi: 10.1051/m2an/2015093
Cité par Sources :