An Interior Penalty Method with C 0 Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1457-1489

Voir la notice de l'article provenant de la source Numdam

The present paper proposes and analyzes an interior penalty technique using C 0 -finite elements to solve the Maxwell equations in domains with heterogeneous properties. The convergence analysis for the boundary value problem and the eigenvalue problem is done assuming only minimal regularity in Lipschitz domains. The method is shown to converge for any polynomial degrees and to be spectrally correct.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015086
Classification : 65N25, 65F15, 35Q60
Keywords: Finite elements, Maxwell equations, eigenvalue, discontinuous coefficients, spectral approximation

Bonito, Andrea 1 ; Guermond, Jean-Luc 1 ; Luddens, Francky 2

1 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA.
2 LIMSI, UPR 3251 CNRS, BP 133, 91403 Orsay cedex, France.
@article{M2AN_2016__50_5_1457_0,
     author = {Bonito, Andrea and Guermond, Jean-Luc and Luddens, Francky},
     title = {An {Interior} {Penalty} {Method} with $C^{0}$ {Finite} {Elements} for the {Approximation} of the {Maxwell} {Equations} in {Heterogeneous} {Media:} {Convergence} {Analysis} with {Minimal} {Regularity}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1457--1489},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {5},
     year = {2016},
     doi = {10.1051/m2an/2015086},
     zbl = {1352.78014},
     mrnumber = {3554549},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015086/}
}
TY  - JOUR
AU  - Bonito, Andrea
AU  - Guermond, Jean-Luc
AU  - Luddens, Francky
TI  - An Interior Penalty Method with $C^{0}$ Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1457
EP  - 1489
VL  - 50
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015086/
DO  - 10.1051/m2an/2015086
LA  - en
ID  - M2AN_2016__50_5_1457_0
ER  - 
%0 Journal Article
%A Bonito, Andrea
%A Guermond, Jean-Luc
%A Luddens, Francky
%T An Interior Penalty Method with $C^{0}$ Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1457-1489
%V 50
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015086/
%R 10.1051/m2an/2015086
%G en
%F M2AN_2016__50_5_1457_0
Bonito, Andrea; Guermond, Jean-Luc; Luddens, Francky. An Interior Penalty Method with $C^{0}$ Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1457-1489. doi: 10.1051/m2an/2015086

Cité par Sources :