Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1289-1331

Voir la notice de l'article provenant de la source Numdam

We are concerned with fully-discrete schemes for the numerical approximation of diffusive-dispersive hyperbolic conservation laws with a discontinuous flux function in one-space dimension. More precisely, we show the convergence of approximate solutions, generated by the scheme corresponding to vanishing diffusive-dispersive scalar conservation laws with a discontinuous coefficient, to the corresponding scalar conservation law with discontinuous coefficient. Finally, the convergence is illustrated by several examples. In particular, it is delineated that the limiting solutions generated by the scheme need not coincide, depending on the relation between diffusion and the dispersion coefficients, with the classical Kružkov−Oleĭnik entropy solutions, but contain nonclassical undercompressive shock waves.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015083
Classification : 35L65, 35L67, 35L25, 65M12, 65M06, 65M08
Keywords: Conservation laws, discontinuous flux, diffusive-dispersive approximation, finite difference scheme, convergence, entropy condition, nonclassical shock

Dutta, Rajib 1 ; Koley, Ujjwal 2 ; Ray, Deep 2

1 Institut für Mathematik, Julius-Maximilians-Universität Würzburg, Campus Hubland Nord, Emil-Fischer-Strasse 30, 97074, Würzburg, Germany.
2 Centre For Applicable Mathematics (CAM), Tata Institute of Fundamental Research, P.O. Box 6503, GKVK post office, 560065 Bangalore, India.
@article{M2AN_2016__50_5_1289_0,
     author = {Dutta, Rajib and Koley, Ujjwal and Ray, Deep},
     title = {Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1289--1331},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {5},
     year = {2016},
     doi = {10.1051/m2an/2015083},
     zbl = {1373.65054},
     mrnumber = {3554544},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015083/}
}
TY  - JOUR
AU  - Dutta, Rajib
AU  - Koley, Ujjwal
AU  - Ray, Deep
TI  - Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1289
EP  - 1331
VL  - 50
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015083/
DO  - 10.1051/m2an/2015083
LA  - en
ID  - M2AN_2016__50_5_1289_0
ER  - 
%0 Journal Article
%A Dutta, Rajib
%A Koley, Ujjwal
%A Ray, Deep
%T Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1289-1331
%V 50
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015083/
%R 10.1051/m2an/2015083
%G en
%F M2AN_2016__50_5_1289_0
Dutta, Rajib; Koley, Ujjwal; Ray, Deep. Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1289-1331. doi: 10.1051/m2an/2015083

Cité par Sources :