Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1425-1455

Voir la notice de l'article provenant de la source Numdam

The method of two scale convergence is implemented to study the homogenization of time-dependent nonlocal continuum models of heterogeneous media. Two integro-differential models are considered: the nonlocal convection-diffusion equation and the state-based peridynamic model in nonlocal continuum mechanics. The asymptotic analysis delivers both homogenized dynamics as well as strong approximations expressed in terms of a suitable corrector theory. The method provides a natural analog to that for the time-dependent local PDE models with highly oscillatory coefficients with the distinction that the driving operators considered in this work are bounded.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015080
Classification : 74Q05, 74E05, 74H10, 45F99, 45P05
Keywords: Multiscale analysis, peridynamics, nonlocal equations, Navier equation, homogenization, heterogeneous materials, two-scale convergence

Du, Qiang 1 ; Lipton, Robert 2 ; Mengesha, Tadele 3

1 Department of Applied Physics and Applied Mathematics, Columbia University, New York, 10027, USA.
2 Department of Mathematics, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
3 Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA.
@article{M2AN_2016__50_5_1425_0,
     author = {Du, Qiang and Lipton, Robert and Mengesha, Tadele},
     title = {Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1425--1455},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {5},
     year = {2016},
     doi = {10.1051/m2an/2015080},
     zbl = {1348.74287},
     mrnumber = {3554548},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015080/}
}
TY  - JOUR
AU  - Du, Qiang
AU  - Lipton, Robert
AU  - Mengesha, Tadele
TI  - Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1425
EP  - 1455
VL  - 50
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015080/
DO  - 10.1051/m2an/2015080
LA  - en
ID  - M2AN_2016__50_5_1425_0
ER  - 
%0 Journal Article
%A Du, Qiang
%A Lipton, Robert
%A Mengesha, Tadele
%T Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1425-1455
%V 50
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015080/
%R 10.1051/m2an/2015080
%G en
%F M2AN_2016__50_5_1425_0
Du, Qiang; Lipton, Robert; Mengesha, Tadele. Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1425-1455. doi: 10.1051/m2an/2015080

Cité par Sources :