A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 4, pp. 1193-1222

Voir la notice de l'article provenant de la source Numdam

We present the first systematic work for deriving a posteriori error estimates for general non-polynomial basis functions in an interior penalty discontinuous Galerkin (DG) formulation for solving second order linear PDEs. Our residual type upper and lower bound error estimates measure the error in the energy norm. The main merit of our method is that the method is parameter-free, in the sense that all but one solution-dependent constants appearing in the upper and lower bound estimates are explicitly computable by solving local eigenvalue problems, and the only non-computable constant can be reasonably approximated by a computable one without affecting the overall effectiveness of the estimates in practice. As a side product of our formulation, the penalty parameter in the interior penalty formulation can be automatically determined as well. We develop an efficient numerical procedure to compute the error estimators. Numerical results for a variety of problems in 1D and 2D demonstrate that both the upper bound and lower bound are effective.

DOI : 10.1051/m2an/2015069
Classification : 65J10, 65N15, 65N30
Keywords: Discontinuous Galerkin method, a posteriori error estimation, non-polynomial basis functions, partial differential equations

Lin, Lin 1 ; Stamm, Benjamin 2

1 Department of Mathematics, University of California Berkeley and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
2 Sorbonne Universités, UPMC Univ. Paris 06, UMR 7598, CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France
@article{M2AN_2016__50_4_1193_0,
     author = {Lin, Lin and Stamm, Benjamin},
     title = {A posteriori error estimates for discontinuous {Galerkin} methods using non-polynomial basis functions {Part} {I:} {Second} order linear {PDE}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1193--1222},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {4},
     year = {2016},
     doi = {10.1051/m2an/2015069},
     mrnumber = {3535236},
     zbl = {1348.65153},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015069/}
}
TY  - JOUR
AU  - Lin, Lin
AU  - Stamm, Benjamin
TI  - A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1193
EP  - 1222
VL  - 50
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015069/
DO  - 10.1051/m2an/2015069
LA  - en
ID  - M2AN_2016__50_4_1193_0
ER  - 
%0 Journal Article
%A Lin, Lin
%A Stamm, Benjamin
%T A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1193-1222
%V 50
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015069/
%R 10.1051/m2an/2015069
%G en
%F M2AN_2016__50_4_1193_0
Lin, Lin; Stamm, Benjamin. A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 4, pp. 1193-1222. doi: 10.1051/m2an/2015069

Cité par Sources :