hp-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 699-725

Voir la notice de l'article provenant de la source Numdam

We consider the hp-version interior penalty discontinuous Galerkin finite element method (DGFEM) for the numerical approximation of the advection-diffusion-reaction equation on general computational meshes consisting of polygonal/polyhedral (polytopic) elements. In particular, new hp-version a priori error bounds are derived based on a specific choice of the interior penalty parameter which allows for edge/face-degeneration. The proposed method employs elemental polynomial bases of total degree p (𝒫 p -basis) defined in the physical coordinate system, without requiring the mapping from a given reference or canonical frame. Numerical experiments highlighting the performance of the proposed DGFEM are presented. In particular, we study the competitiveness of the p-version DGFEM employing a 𝒫 p -basis on both polytopic and tensor-product elements with a (standard) DGFEM employing a (mapped) 𝒬 p -basis. Moreover, a computational example is also presented which demonstrates the performance of the proposed hp-version DGFEM on general agglomerated meshes.

Reçu le :
DOI : 10.1051/m2an/2015059
Classification : 65N30, 65N50, 65N55
Keywords: Discontinuous Galerkin, polygonal elements, polyhedral elements, hp-finite element methods, inverse estimates, ��-basis, PDEs with nonnegative characteristic form

Cangiani, Andrea 1 ; Dong, Zhaonan 1 ; Georgoulis, Emmanuil H. 2 ; Houston, Paul 3

1 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
2 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK & School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
3 School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
@article{M2AN_2016__50_3_699_0,
     author = {Cangiani, Andrea and Dong, Zhaonan and Georgoulis, Emmanuil H. and Houston, Paul},
     title = {$hp${-Version} discontinuous {Galerkin} methods for advection-diffusion-reaction problems on polytopic meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {699--725},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {3},
     year = {2016},
     doi = {10.1051/m2an/2015059},
     mrnumber = {3507270},
     zbl = {1342.65213},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015059/}
}
TY  - JOUR
AU  - Cangiani, Andrea
AU  - Dong, Zhaonan
AU  - Georgoulis, Emmanuil H.
AU  - Houston, Paul
TI  - $hp$-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 699
EP  - 725
VL  - 50
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015059/
DO  - 10.1051/m2an/2015059
LA  - en
ID  - M2AN_2016__50_3_699_0
ER  - 
%0 Journal Article
%A Cangiani, Andrea
%A Dong, Zhaonan
%A Georgoulis, Emmanuil H.
%A Houston, Paul
%T $hp$-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 699-725
%V 50
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015059/
%R 10.1051/m2an/2015059
%G en
%F M2AN_2016__50_3_699_0
Cangiani, Andrea; Dong, Zhaonan; Georgoulis, Emmanuil H.; Houston, Paul. $hp$-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 699-725. doi: 10.1051/m2an/2015059

Cité par Sources :