Voir la notice de l'article provenant de la source Numdam
We consider the -version interior penalty discontinuous Galerkin finite element method (DGFEM) for the numerical approximation of the advection-diffusion-reaction equation on general computational meshes consisting of polygonal/polyhedral (polytopic) elements. In particular, new -version a priori error bounds are derived based on a specific choice of the interior penalty parameter which allows for edge/face-degeneration. The proposed method employs elemental polynomial bases of total degree (-basis) defined in the physical coordinate system, without requiring the mapping from a given reference or canonical frame. Numerical experiments highlighting the performance of the proposed DGFEM are presented. In particular, we study the competitiveness of the -version DGFEM employing a -basis on both polytopic and tensor-product elements with a (standard) DGFEM employing a (mapped) -basis. Moreover, a computational example is also presented which demonstrates the performance of the proposed -version DGFEM on general agglomerated meshes.
Cangiani, Andrea 1 ; Dong, Zhaonan 1 ; Georgoulis, Emmanuil H. 2 ; Houston, Paul 3
@article{M2AN_2016__50_3_699_0, author = {Cangiani, Andrea and Dong, Zhaonan and Georgoulis, Emmanuil H. and Houston, Paul}, title = {$hp${-Version} discontinuous {Galerkin} methods for advection-diffusion-reaction problems on polytopic meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {699--725}, publisher = {EDP-Sciences}, volume = {50}, number = {3}, year = {2016}, doi = {10.1051/m2an/2015059}, mrnumber = {3507270}, zbl = {1342.65213}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015059/} }
TY - JOUR AU - Cangiani, Andrea AU - Dong, Zhaonan AU - Georgoulis, Emmanuil H. AU - Houston, Paul TI - $hp$-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 699 EP - 725 VL - 50 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015059/ DO - 10.1051/m2an/2015059 LA - en ID - M2AN_2016__50_3_699_0 ER -
%0 Journal Article %A Cangiani, Andrea %A Dong, Zhaonan %A Georgoulis, Emmanuil H. %A Houston, Paul %T $hp$-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 699-725 %V 50 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015059/ %R 10.1051/m2an/2015059 %G en %F M2AN_2016__50_3_699_0
Cangiani, Andrea; Dong, Zhaonan; Georgoulis, Emmanuil H.; Houston, Paul. $hp$-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 699-725. doi: 10.1051/m2an/2015059
Cité par Sources :