Analysis of the penalized 3D variable viscosity stokes equations coupled to diffusion and transport
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 565-591

Voir la notice de l'article provenant de la source Numdam

The analysis of the penalized Stokes problem, in its variable viscosity formulation, coupled to convection-diffusion equations is presented in this article. It models the interaction between a highly viscous fluid with variable viscosity and immersed moving and deformable obstacles. Indeed, while it is quite common to couple Poisson equations to diffusion-transport equations in plasma physics or fluid dynamics in vorticity formulations, the study of complex fluids requires to consider together the Stokes problem in complex moving geometry and convection-diffusion equations. The main result of this paper shows the existence and the uniqueness of the solution to this equations system with regularity estimates. Then we show that the solution to the penalized problem weakly converges toward the solution to the physical problem. Numerical simulations of fluid mechanics computations in this context are also presented in order to illustrate the practical aspects of such models: lung cells and their surrounding heterogeneous fluid, and porous media flows. Among the main original aspects in the present study, one can highlight the non linear dynamics induced by the coupling, and the tracking of the time-dependence of the domain.

Reçu le :
DOI : 10.1051/m2an/2015056
Classification : 35Q30, 76D03, 76D07, 65M25, 68U20, 76Z05, 92B05
Keywords: Stokes equations, moving geometry, variable viscosity flows, porous media flows, biomathematics

Chatelin, Robin 1 ; Sanchez, David 2 ; Poncet, Philippe 3

1 Universitéde Lyon, ENISE, LTDS UMR CNRS 5513, 58 rue Jean Parot, 42023 Saint-Étienne cedex 02, France.
2 Toulouse Mathematics Institute, UMR CNRS 5219, Team MIP, INSA, GMM 135 avenue de Rangueil, 31077 Toulouse, France.
3 LMAP, UMR CNRS 5142, IPRA, UPPA, avenue de l’Université, BP 1155, 64013 Pau, France.
@article{M2AN_2016__50_2_565_0,
     author = {Chatelin, Robin and Sanchez, David and Poncet, Philippe},
     title = {Analysis of the penalized {3D} variable viscosity stokes equations coupled to diffusion and transport},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {565--591},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {2},
     year = {2016},
     doi = {10.1051/m2an/2015056},
     mrnumber = {3482555},
     zbl = {1343.35185},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015056/}
}
TY  - JOUR
AU  - Chatelin, Robin
AU  - Sanchez, David
AU  - Poncet, Philippe
TI  - Analysis of the penalized 3D variable viscosity stokes equations coupled to diffusion and transport
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 565
EP  - 591
VL  - 50
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015056/
DO  - 10.1051/m2an/2015056
LA  - en
ID  - M2AN_2016__50_2_565_0
ER  - 
%0 Journal Article
%A Chatelin, Robin
%A Sanchez, David
%A Poncet, Philippe
%T Analysis of the penalized 3D variable viscosity stokes equations coupled to diffusion and transport
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 565-591
%V 50
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015056/
%R 10.1051/m2an/2015056
%G en
%F M2AN_2016__50_2_565_0
Chatelin, Robin; Sanchez, David; Poncet, Philippe. Analysis of the penalized 3D variable viscosity stokes equations coupled to diffusion and transport. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 565-591. doi: 10.1051/m2an/2015056

Cité par Sources :