Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 541-563

Voir la notice de l'article provenant de la source Numdam

We investigate a finite element approximation of an initial boundary value problem associated with parabolic Partial Differential Equations endowed with mixed time varying boundary conditions, switching from essential to natural and vice versa. The switching occurs both in time and in different portions of the boundary. For this problem, we apply and extend the Nitsche’s method presented in [Juntunen and Stenberg, Math. Comput. (2009)] to the case of mixed time varying boundary conditions. After proving existence and numerical stability of the full discrete numerical solution obtained by using the θ-method for time discretization, we present and discuss a numerical test that compares our method to a standard approach based on remeshing and projection procedures.

DOI : 10.1051/m2an/2015054
Classification : 35K20, 65M12, 65M60, 68U20, 74S05
Keywords: Nitsche’s method, parabolic problems, mixed time varying boundary conditions, stability analysis, finite element method

Tagliabue, Anna 1 ; Dedè, Luca 2 ; Quarteroni, Alfio 1, 2

1 MOX – Modeling and Scientific Computing, Mathematics Department “F. Brioschi”, Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy.
2 CMCS – Chair of Modeling and Scientific Computing, MATHICSE – Mathematics Institute of Computational Science and Engineering, EPFL – École Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzerland
@article{M2AN_2016__50_2_541_0,
     author = {Tagliabue, Anna and Ded\`e, Luca and Quarteroni, Alfio},
     title = {Nitsche{\textquoteright}s method for parabolic partial differential equations with mixed time varying boundary conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {541--563},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {2},
     year = {2016},
     doi = {10.1051/m2an/2015054},
     mrnumber = {3482554},
     zbl = {1382.65327},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015054/}
}
TY  - JOUR
AU  - Tagliabue, Anna
AU  - Dedè, Luca
AU  - Quarteroni, Alfio
TI  - Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 541
EP  - 563
VL  - 50
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015054/
DO  - 10.1051/m2an/2015054
LA  - en
ID  - M2AN_2016__50_2_541_0
ER  - 
%0 Journal Article
%A Tagliabue, Anna
%A Dedè, Luca
%A Quarteroni, Alfio
%T Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 541-563
%V 50
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015054/
%R 10.1051/m2an/2015054
%G en
%F M2AN_2016__50_2_541_0
Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio. Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 541-563. doi: 10.1051/m2an/2015054

Cité par Sources :