Voir la notice de l'article provenant de la source Numdam
This paper deals with an existence theorem for a model describing an elasto-viscoplastic evolution of a 2D material with linear kinematic hardening and fracture where the Griffith fracture energy is regularized using a -Laplacian.
Jakabčin, Lukáš 1
@article{M2AN_2016__50_2_455_0, author = {Jakab\v{c}in, Luk\'a\v{s}}, title = {Existence of solutions to an elasto-viscoplastic model with kinematic hardening and $r${-Laplacian} fracture approximation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {455--473}, publisher = {EDP-Sciences}, volume = {50}, number = {2}, year = {2016}, doi = {10.1051/m2an/2015053}, mrnumber = {3482551}, zbl = {1338.74096}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015053/} }
TY - JOUR AU - Jakabčin, Lukáš TI - Existence of solutions to an elasto-viscoplastic model with kinematic hardening and $r$-Laplacian fracture approximation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 455 EP - 473 VL - 50 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015053/ DO - 10.1051/m2an/2015053 LA - en ID - M2AN_2016__50_2_455_0 ER -
%0 Journal Article %A Jakabčin, Lukáš %T Existence of solutions to an elasto-viscoplastic model with kinematic hardening and $r$-Laplacian fracture approximation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 455-473 %V 50 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015053/ %R 10.1051/m2an/2015053 %G en %F M2AN_2016__50_2_455_0
Jakabčin, Lukáš. Existence of solutions to an elasto-viscoplastic model with kinematic hardening and $r$-Laplacian fracture approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 455-473. doi: 10.1051/m2an/2015053
Cité par Sources :