Voir la notice de l'article provenant de la source Numdam
In this paper, a nonconforming finite element method has been proposed and analyzed for the von Kármán equations that describe bending of thin elastic plates. Optimal order error estimates in broken energy and norms are derived under minimal regularity assumptions. Numerical results that justify the theoretical results are presented.
Mallik, Gouranga 1 ; Nataraj, Neela 1
@article{M2AN_2016__50_2_433_0, author = {Mallik, Gouranga and Nataraj, Neela}, title = {A {Nonconforming} {Finite} {Element} {Approximation} for the von {Karman} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {433--454}, publisher = {EDP-Sciences}, volume = {50}, number = {2}, year = {2016}, doi = {10.1051/m2an/2015052}, mrnumber = {3482550}, zbl = {1375.74089}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015052/} }
TY - JOUR AU - Mallik, Gouranga AU - Nataraj, Neela TI - A Nonconforming Finite Element Approximation for the von Karman equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 433 EP - 454 VL - 50 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015052/ DO - 10.1051/m2an/2015052 LA - en ID - M2AN_2016__50_2_433_0 ER -
%0 Journal Article %A Mallik, Gouranga %A Nataraj, Neela %T A Nonconforming Finite Element Approximation for the von Karman equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 433-454 %V 50 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015052/ %R 10.1051/m2an/2015052 %G en %F M2AN_2016__50_2_433_0
Mallik, Gouranga; Nataraj, Neela. A Nonconforming Finite Element Approximation for the von Karman equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 433-454. doi: 10.1051/m2an/2015052
Cité par Sources :