Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods
ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 635-650

Voir la notice de l'article provenant de la source Numdam

We build a bridge between the hybrid high-order (HHO) and the hybridizable discontinuous Galerkin (HDG) methods in the setting of a model diffusion problem. First, we briefly recall the construction of HHO methods and derive some new variants. Then, by casting the HHO method in mixed form, we identify the numerical flux so that the HHO method can be compared to HDG methods. In turn, the incorporation of the HHO method into the HDG framework brings up new, efficient choices of the local spaces and a new, subtle construction of the numerical flux ensuring optimal orders of convergence on meshes made of general shape-regular polyhedral elements. Numerical experiments comparing two of these methods are shown.

Reçu le :
DOI : 10.1051/m2an/2015051
Classification : 65N30, 65N08
Keywords: Hybridizable discontinuous Galerkin, hybrid high-order, variable diffusion problems

Cockburn, Bernardo 1 ; Di Pietro, Daniele A. 2 ; Ern, Alexandre 3

1 School of Mathematics, University of Minnesota, Minneapolis, USA
2 University of Montpellier, Institut Montpelliérain Alexander Grothendieck, 34095 Montpellier, France
3 University Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée cedex 2, France
@article{M2AN_2016__50_3_635_0,
     author = {Cockburn, Bernardo and Di Pietro, Daniele A. and Ern, Alexandre},
     title = {Bridging the hybrid high-order and hybridizable discontinuous {Galerkin} methods},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {635--650},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {3},
     year = {2016},
     doi = {10.1051/m2an/2015051},
     zbl = {1341.65045},
     mrnumber = {3507267},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015051/}
}
TY  - JOUR
AU  - Cockburn, Bernardo
AU  - Di Pietro, Daniele A.
AU  - Ern, Alexandre
TI  - Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 635
EP  - 650
VL  - 50
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015051/
DO  - 10.1051/m2an/2015051
LA  - en
ID  - M2AN_2016__50_3_635_0
ER  - 
%0 Journal Article
%A Cockburn, Bernardo
%A Di Pietro, Daniele A.
%A Ern, Alexandre
%T Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 635-650
%V 50
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015051/
%R 10.1051/m2an/2015051
%G en
%F M2AN_2016__50_3_635_0
Cockburn, Bernardo; Di Pietro, Daniele A.; Ern, Alexandre. Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 635-650. doi: 10.1051/m2an/2015051

Cité par Sources :