Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 475-497

Voir la notice de l'article provenant de la source Numdam

We prove the convergence of an explicit numerical scheme for the discretization of a coupled hyperbolic-parabolic system in two space dimensions. The hyperbolic part is solved by a Lax−Friedrichs method with dimensional splitting, while the parabolic part is approximated by an explicit finite-difference method. For both equations, the source terms are treated by operator splitting. To prove convergence of the scheme, we show strong convergence of the hyperbolic variable, while convergence of the parabolic part is obtained only weakly* in 𝐋 . The proof relies on the fact that the hyperbolic flux depends on the parabolic variable through a convolution function. The paper also includes numerical examples that document the theoretically proved convergence and display the characteristic behaviour of the Lotka−Volterra equations.

Reçu le :
DOI : 10.1051/m2an/2015050
Classification : 65M12, 35M30
Keywords: Numerical analysis, mixed systems of partial differential equations, coupled equations, Lax−Friedrichs method, finite difference schemes, nonlocal conservation laws

Rossi, Elena 1 ; Schleper, Veronika 2

1 University of Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy.
2 University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
@article{M2AN_2016__50_2_475_0,
     author = {Rossi, Elena and Schleper, Veronika},
     title = {Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {475--497},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {2},
     year = {2016},
     doi = {10.1051/m2an/2015050},
     mrnumber = {3482552},
     zbl = {1347.65145},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015050/}
}
TY  - JOUR
AU  - Rossi, Elena
AU  - Schleper, Veronika
TI  - Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 475
EP  - 497
VL  - 50
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015050/
DO  - 10.1051/m2an/2015050
LA  - en
ID  - M2AN_2016__50_2_475_0
ER  - 
%0 Journal Article
%A Rossi, Elena
%A Schleper, Veronika
%T Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 475-497
%V 50
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015050/
%R 10.1051/m2an/2015050
%G en
%F M2AN_2016__50_2_475_0
Rossi, Elena; Schleper, Veronika. Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 475-497. doi: 10.1051/m2an/2015050

Cité par Sources :