Robust Arbitrary Order Mixed Finite Element Methods for the Incompressible Stokes Equations with pressure independent velocity errors
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 289-309

Voir la notice de l'article provenant de la source Numdam

Standard mixed finite element methods for the incompressible Navier–Stokes equations that relax the divergence constraint are not robust against large irrotational forces in the momentum balance and the velocity error depends on the continuous pressure. This robustness issue can be completely cured by using divergence-free mixed finite elements which deliver pressure-independent velocity error estimates. However, the construction of H 1 -conforming, divergence-free mixed finite element methods is rather difficult. Instead, we present a novel approach for the construction of arbitrary order mixed finite element methods which deliver pressure-independent velocity errors. The approach does not change the trial functions but replaces discretely divergence-free test functions in some operators of the weak formulation by divergence-free ones. This modification is applied to inf-sup stable conforming and nonconforming mixed finite element methods of arbitrary order in two and three dimensions. Optimal estimates for the incompressible Stokes equations are proved for the H 1 and L 2 errors of the velocity and the L 2 error of the pressure. Moreover, both velocity errors are pressure-independent, demonstrating the improved robustness. Several numerical examples illustrate the results.

Reçu le :
DOI : 10.1051/m2an/2015044
Classification : 65N15, 65N30, 76D07
Keywords: Mixed finite element methods, incompressible Stokes problem, divergence-free methods, conforming and nonconforming FEM, mass conservation

Linke, Alexander 1 ; Matthies, Gunar 2 ; Tobiska, Lutz 3

1 Weierstraß-Institut, Mohrenstraße 39, 10117 Berlin, Germany.
2 Institut für Numerische Mathematik, Technische Universität Dresden, 01062 Dresden, Germany.
3 Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
@article{M2AN_2016__50_1_289_0,
     author = {Linke, Alexander and Matthies, Gunar and Tobiska, Lutz},
     title = {Robust {Arbitrary} {Order} {Mixed} {Finite} {Element} {Methods} for the {Incompressible} {Stokes} {Equations} with pressure independent velocity errors},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {289--309},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {1},
     year = {2016},
     doi = {10.1051/m2an/2015044},
     zbl = {1381.76186},
     mrnumber = {3460110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015044/}
}
TY  - JOUR
AU  - Linke, Alexander
AU  - Matthies, Gunar
AU  - Tobiska, Lutz
TI  - Robust Arbitrary Order Mixed Finite Element Methods for the Incompressible Stokes Equations with pressure independent velocity errors
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 289
EP  - 309
VL  - 50
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015044/
DO  - 10.1051/m2an/2015044
LA  - en
ID  - M2AN_2016__50_1_289_0
ER  - 
%0 Journal Article
%A Linke, Alexander
%A Matthies, Gunar
%A Tobiska, Lutz
%T Robust Arbitrary Order Mixed Finite Element Methods for the Incompressible Stokes Equations with pressure independent velocity errors
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 289-309
%V 50
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015044/
%R 10.1051/m2an/2015044
%G en
%F M2AN_2016__50_1_289_0
Linke, Alexander; Matthies, Gunar; Tobiska, Lutz. Robust Arbitrary Order Mixed Finite Element Methods for the Incompressible Stokes Equations with pressure independent velocity errors. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 289-309. doi: 10.1051/m2an/2015044

Cité par Sources :