Optimal control of the full time-dependent maxwell equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 237-261

Voir la notice de l'article provenant de la source Numdam

This paper analyzes the optimal control of the full time-dependent Maxwell equations. Our goal is to find an optimal current density and its time-dependent amplitude which steer the electric and magnetic fields to the desired ones. The main difficulty of the optimal control problem arises from the complexity of the Maxwell equations, featuring a first-order hyperbolic structure. We present a rigorous mathematical analysis for the optimal control problem. Here, the semigroup theory and the Helmholtz decomposition theory are the key tools in the analysis. Our theoretical findings include existence, strong regularity, and KKT theory. The corresponding optimality system consists of forward-backward Maxwell equations for the optimal electromagnetic and adjoint fields, magnetostatic saddle point equations for the optimal current density, and a projection formula for the optimal time-dependent amplitude. A semismooth Newton algorithm in a function space is established for solving the nonlinear and nonsmooth optimality system. The paper is concluded by numerical results, where mixed finite elements and Crank–Nicholson schema are used.

Reçu le :
DOI : 10.1051/m2an/2015041
Classification : 78A25, 35Q61, 49K20
Keywords: Optimal control, time-dependent Maxwell’s equations, strongly continuous semigroup, Helmholtz decomposition, semismooth Newton

Bommer, Vera 1 ; Yousept, Irwin 1

1 Universität Duisburg-Essen, Fakultät für Mathematik, Thea-Leymann-Str. 9, 45127 Essen, Germany.
@article{M2AN_2016__50_1_237_0,
     author = {Bommer, Vera and Yousept, Irwin},
     title = {Optimal control of the full time-dependent maxwell equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {237--261},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {1},
     year = {2016},
     doi = {10.1051/m2an/2015041},
     zbl = {1379.78005},
     mrnumber = {3460108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015041/}
}
TY  - JOUR
AU  - Bommer, Vera
AU  - Yousept, Irwin
TI  - Optimal control of the full time-dependent maxwell equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 237
EP  - 261
VL  - 50
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015041/
DO  - 10.1051/m2an/2015041
LA  - en
ID  - M2AN_2016__50_1_237_0
ER  - 
%0 Journal Article
%A Bommer, Vera
%A Yousept, Irwin
%T Optimal control of the full time-dependent maxwell equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 237-261
%V 50
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015041/
%R 10.1051/m2an/2015041
%G en
%F M2AN_2016__50_1_237_0
Bommer, Vera; Yousept, Irwin. Optimal control of the full time-dependent maxwell equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 237-261. doi: 10.1051/m2an/2015041

Cité par Sources :