Multi-physics optimal transportation and image interpolation
ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1671-1692

Voir la notice de l'article provenant de la source Numdam

Optimal transportation theory is a powerful tool to deal with image interpolation. This was first investigated by [Benamou and Brenier, Numer. Math. 84 (2000) 375–393.] where an algorithm based on the minimization of a kinetic energy under a conservation of mass constraint was devised. By structure, this algorithm does not preserve image regions along the optimal interpolation path, and it is actually not very difficult to exhibit test cases where the algorithm produces a path of images where high density regions split at the beginning before merging back at its end. However, in some applications to image interpolation this behaviour is not physically realistic. Hence, this paper aims at studying how some physics can be added to the optimal transportation theory, how to construct algorithms to compute solutions to the corresponding optimization problems and how to apply the proposed methods to image interpolation.

Reçu le :
DOI : 10.1051/m2an/2015038
Classification : 68U10, 65K10, 35D05
Keywords: Optimal transportation, image multiphysics, proximal splitting method, non-convex optimization

Hug, Romain 1 ; Maitre, Emmanuel 1 ; Papadakis, Nicolas 2

1 Laboratoire Jean Kuntzmann, Grenoble University, Université Joseph Fourrier and CNRS, France.
2 Institut de Mathématiques de Bordeaux, CNRS and Université Bordeaux 1, France.
@article{M2AN_2015__49_6_1671_0,
     author = {Hug, Romain and Maitre, Emmanuel and Papadakis, Nicolas},
     title = {Multi-physics optimal transportation and image interpolation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1671--1692},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {6},
     year = {2015},
     doi = {10.1051/m2an/2015038},
     zbl = {1348.94006},
     mrnumber = {3423271},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015038/}
}
TY  - JOUR
AU  - Hug, Romain
AU  - Maitre, Emmanuel
AU  - Papadakis, Nicolas
TI  - Multi-physics optimal transportation and image interpolation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1671
EP  - 1692
VL  - 49
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015038/
DO  - 10.1051/m2an/2015038
LA  - en
ID  - M2AN_2015__49_6_1671_0
ER  - 
%0 Journal Article
%A Hug, Romain
%A Maitre, Emmanuel
%A Papadakis, Nicolas
%T Multi-physics optimal transportation and image interpolation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1671-1692
%V 49
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015038/
%R 10.1051/m2an/2015038
%G en
%F M2AN_2015__49_6_1671_0
Hug, Romain; Maitre, Emmanuel; Papadakis, Nicolas. Multi-physics optimal transportation and image interpolation. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1671-1692. doi: 10.1051/m2an/2015038

Cité par Sources :