Voir la notice de l'article provenant de la source Numdam
In this paper, we propose a new cell-center method to treat sliding of compressible fluid domains. We describe at first the theoretical framework based on [S. Del Pino, C. R. Acad. Sci. Paris, Ser. I 348 (2010) 1027–1032]. We introduce the notion of slide lines thanks to a mortar-like approach. We propose and analyze a discretization of the theoritical method. We also describe a simple ALE procedure that preserves the slide line Lagrangian so that no mixed-cells model is necessary. Finally we present a set of representative numerical tests.
Bertoluzza, Silvia 1 ; Del Pino, Stéphane 2 ; Labourasse, Emmanuel 3
@article{M2AN_2016__50_1_187_0, author = {Bertoluzza, Silvia and Del Pino, St\'ephane and Labourasse, Emmanuel}, title = {A conservative slide line method for cell-centered {semi-Lagrangian} and {ALE} schemes in {2D}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {187--214}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/m2an/2015037}, zbl = {1382.76181}, mrnumber = {3460106}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015037/} }
TY - JOUR AU - Bertoluzza, Silvia AU - Del Pino, Stéphane AU - Labourasse, Emmanuel TI - A conservative slide line method for cell-centered semi-Lagrangian and ALE schemes in 2D JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 187 EP - 214 VL - 50 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015037/ DO - 10.1051/m2an/2015037 LA - en ID - M2AN_2016__50_1_187_0 ER -
%0 Journal Article %A Bertoluzza, Silvia %A Del Pino, Stéphane %A Labourasse, Emmanuel %T A conservative slide line method for cell-centered semi-Lagrangian and ALE schemes in 2D %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 187-214 %V 50 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015037/ %R 10.1051/m2an/2015037 %G en %F M2AN_2016__50_1_187_0
Bertoluzza, Silvia; Del Pino, Stéphane; Labourasse, Emmanuel. A conservative slide line method for cell-centered semi-Lagrangian and ALE schemes in 2D. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 187-214. doi : 10.1051/m2an/2015037. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015037/
The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179–192. | Zbl | MR | DOI
,The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics. J. Comput. Phys. 218 (2006) 572–593. | Zbl | MR | DOI
, , , , and ,The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–199. | Zbl | MR | DOI
,Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Meth. Appl. Mech. Engrg. 99 (1992) 235–394. | Zbl | MR | DOI
,C. Bernardi, Y. Maday and A.T. Patera, A New Nonconforming Approach to Domain Decomposition: The Mortar Element Method. Nonlin. Partial Differ. Equ. Appl. Edited by H. Brezis and J. L. Lions. Pitman, New York (1994) 13–51. | Zbl | MR
N.G. Bourago and V.N. Kukudzhanov, A Review of Contact Algorithms. The Institute for Problems in Mechanics of RAS. Izv. RAN, MTT Translation into english (2005) 45–87.
A totally Eulerian finite volume solver for multi-material fluid flows. Eur. J. Mech. B/Fluids 28 (2009) 475–485. | Zbl | MR | DOI
, and ,F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer−Verlag, New York (1991). | Zbl | MR
F. Brezzi and L.D. Marini, Macro Hybrid Elements and Domain Decomposition Methods. In Vol. 89 of Optimisation et Contrôle, Meeting in honour of J. Céa, edited by J.D. et al. CÉPADUÈS-Edition, Toulouse (1993) (1992). | Zbl | MR
The implementation of slide lines as a combined force and velocity boundary condition. J. Comput. Phys. 228 (2009) 3911–3916. | Zbl | DOI
,The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys. 146 (1998) 227–262. | Zbl | MR | DOI
, , and ,A cell-centered Lagrangian hydrodynamics scheme in arbitrary dimension. J. Comput. Phys. 228 (2009) 5160–5183. | Zbl | MR | DOI
, , and ,A one-mesh method for the cell-centered discretization of sliding. Comput. Meth. Appl. Mech. Engrg. 269 (2014) 315–333. | Zbl | MR | DOI
, and ,A. Claisse, P. Rouzier and J.M. Ghidaglia, A 2D Sliding Algorithm for Eulerian Multimaterial Simulations. In ECCOMAS 6th European Congress on Computational Methods in Applied Sciences and Engineering (2012).
A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates. C. R. Acad. Sci. Paris, Ser. I 348 (2010) 1027–1032. | Zbl | MR | DOI
,Stabilization of cell-centered compressible Lagrangian methods using subzonal entropy. J. Comput. Phys. 231 (2012) 6559–6595. | Zbl | MR | DOI
and ,Lagrangian gas dynamics in two dimensions and Lagrangian systems. Arch. Rational Mech. Anal. 178 (2005) 327–372. | Zbl | MR | DOI
and ,Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227 5361–5384 (2008) | Zbl | MR | DOI
and ,G.Y.J., Simultaneous untangling and smoothing of tetrahedral meshes. Comput. Meth. Appl. Mech. Engrg. 192 (2003) 2775–2787. | Zbl | DOI
, , and ,G. Folzan, Modélisation multi-matériaux multi-vitesse en dynamique rapide. Under the direction of P. Le Tallec and J.-P. Perlat (in french). Ph.D. thesis, École Poytechnique (2013).
G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd edition. John Hopkins University Press (1996). | Zbl | MR
Volume Of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1981) 201–225. | Zbl | DOI
and ,B.I. Jun, A modified equipotential method for grid relaxation. Tech. Rep. UCRL-JC-138277. Lawrence Livermore National Laboratory (2000)
M. Kucharik, R. Loubère, L. Bednárik and R. Liska, Enhancement of Lagrangian Slide Lines as a Combined for and Velocity Boundary Condition. Comput. Fluids (2012). | Zbl | MR
X.S. Li, An Overview of SuperLU: Algorithms, Implementation and User Interface. In Vol. 31 (2005) 302–325. | Zbl | MR
A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput. 29 (2007) 1781–1824. | Zbl | MR | DOI
, , and ,C. Mazeran, Sur la structure mathématique et l’approximation numérique de l’hydrodynamique Lagrangienne bidimensionelle. Under the direction of B. Després (in french). Ph.D. thesis, Université Bordeaux I (2007).
An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics. J. Comput. Phys. 250 (2013) 527–554. http://www.sciencedirect.com/science/article/pii/S002199911300346X | DOI | MR
, , , and ,A method for the calculation of hydrodynamics shocks. J. Appl. Phys. 21 (1950) 232–237. | Zbl | MR | DOI
and ,On a generalized projection and some related stability estimates in Sobolev spaces. Numer. Math. 90 (2002) 775–786. | Zbl | MR | DOI
,R. Tipton, Grid optimization by equipotential relaxation. Unpublished manuscript (1990).
M.L. Wilkins, Calculation of Elastic-Plastic Flow. In Vol. 3 of Meth. Comput. Phys. Academic Press (1964) 211–263.
D.L. Youngs, Time dependent Multi-Material Flow with Large Fluid Distortion. In Numer. Methods Fluid Dyn. Edited by K.W. Morton, M.J. Baines (1982) 273–285 | Zbl
Y.B. Zel’dovich and Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1. Academic Press, New York and London (1966).
Cité par Sources :