Optimal transport with Coulomb cost. Approximation and duality
ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1643-1657

Voir la notice de l'article provenant de la source Numdam

We revisit the duality theorem for multimarginal optimal transportation problems. In particular, we focus on the Coulomb cost. We use a discrete approximation to prove equality of the extremal values and some careful estimates of the approximating sequence to prove existence of maximizers for the dual problem (Kantorovich’s potentials). Finally we observe that the same strategy can be applied to a more general class of costs and that a classical results on the topic cannot be applied here.

Reçu le :
DOI : 10.1051/m2an/2015035
Classification : 49J45, 49N15, 49K30
Keywords: Multimarginal optimal transportation, Monge−Kantorovich problem, duality theory, Coulomb cost

De Pascale, Luigi 1

1 Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy.
@article{M2AN_2015__49_6_1643_0,
     author = {De Pascale, Luigi},
     title = {Optimal transport with {Coulomb} cost. {Approximation} and duality},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1643--1657},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {6},
     year = {2015},
     doi = {10.1051/m2an/2015035},
     zbl = {1330.49048},
     mrnumber = {3423269},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015035/}
}
TY  - JOUR
AU  - De Pascale, Luigi
TI  - Optimal transport with Coulomb cost. Approximation and duality
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1643
EP  - 1657
VL  - 49
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015035/
DO  - 10.1051/m2an/2015035
LA  - en
ID  - M2AN_2015__49_6_1643_0
ER  - 
%0 Journal Article
%A De Pascale, Luigi
%T Optimal transport with Coulomb cost. Approximation and duality
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1643-1657
%V 49
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015035/
%R 10.1051/m2an/2015035
%G en
%F M2AN_2015__49_6_1643_0
De Pascale, Luigi. Optimal transport with Coulomb cost. Approximation and duality. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1643-1657. doi: 10.1051/m2an/2015035

Cité par Sources :