Voir la notice de l'article provenant de la source Numdam
We discuss a new connection between combinatorial optimization and optimal transport theory through the analysis of a variational problem coming from mathematical Fluid Mechanics. At a discrete level, this minimization problem corresponds to a quadratic assignment problem, which belongs to the NP class of combinatorial optimization. Our analysis is focused on the study of a suitable gradient flow for which we establish the global existence of dissipative solutions which are unique when smooth.
Brenier, Yann 1
@article{M2AN_2015__49_6_1593_0, author = {Brenier, Yann}, title = {Connections between optimal transport, combinatorial optimization and hydrodynamics}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1593--1605}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015034}, mrnumber = {3423266}, zbl = {1335.49075}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015034/} }
TY - JOUR AU - Brenier, Yann TI - Connections between optimal transport, combinatorial optimization and hydrodynamics JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1593 EP - 1605 VL - 49 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015034/ DO - 10.1051/m2an/2015034 LA - en ID - M2AN_2015__49_6_1593_0 ER -
%0 Journal Article %A Brenier, Yann %T Connections between optimal transport, combinatorial optimization and hydrodynamics %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1593-1605 %V 49 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015034/ %R 10.1051/m2an/2015034 %G en %F M2AN_2015__49_6_1593_0
Brenier, Yann. Connections between optimal transport, combinatorial optimization and hydrodynamics. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1593-1605. doi: 10.1051/m2an/2015034
Cité par Sources :