Motivations, ideas and applications of ramified optimal transportation
ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1791-1832

Voir la notice de l'article provenant de la source Numdam

In this survey article, the author summarizes the motivations, key ideas and main applications of ramified optimal transportation that the author has studied in recent years.

Reçu le :
DOI : 10.1051/m2an/2015028
Classification : 90B10, 49Q10, 49Q20
Keywords: Optimal transportation, transport path, branching network, directed graph, ramified transportation

Xia, Qinglan 1

1 University of California at Davis, Department of Mathematics, One Shields Ave, Davis, CA, 95616, USA.
@article{M2AN_2015__49_6_1791_0,
     author = {Xia, Qinglan},
     title = {Motivations, ideas and applications of ramified optimal transportation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1791--1832},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {6},
     year = {2015},
     doi = {10.1051/m2an/2015028},
     mrnumber = {3423276},
     zbl = {1331.49067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015028/}
}
TY  - JOUR
AU  - Xia, Qinglan
TI  - Motivations, ideas and applications of ramified optimal transportation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1791
EP  - 1832
VL  - 49
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015028/
DO  - 10.1051/m2an/2015028
LA  - en
ID  - M2AN_2015__49_6_1791_0
ER  - 
%0 Journal Article
%A Xia, Qinglan
%T Motivations, ideas and applications of ramified optimal transportation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1791-1832
%V 49
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015028/
%R 10.1051/m2an/2015028
%G en
%F M2AN_2015__49_6_1791_0
Xia, Qinglan. Motivations, ideas and applications of ramified optimal transportation. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1791-1832. doi: 10.1051/m2an/2015028

Cité par Sources :