A hybrid variational principle for the Keller–Segel system in 2
ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1553-1576

Voir la notice de l'article provenant de la source Numdam

We construct weak global in time solutions to the classical Keller–Segel system describing cell movement by chemotaxis in two dimensions when the total mass is below the established critical value. Our construction takes advantage of the fact that the Keller–Segel system can be realized as a gradient flow in a suitable functional product space. This allows us to employ a hybrid variational principle which is a generalisation of the minimizing implicit scheme for Wasserstein distances introduced by [R. Jordan, D. Kinderlehrer and F. Otto, SIAM J. Math. Anal. 29 (1998) 1–17].

Reçu le :
DOI : 10.1051/m2an/2015021
Classification : 35K65, 35K40, 47J30, 35Q92, 35B33
Keywords: Chemotaxis, Keller–Segel model, minimizing scheme, Kantorovich–Rubinstein–Wasserstein distance

Blanchet, Adrien 1 ; Carrillo, José Antonio 2 ; Kinderlehrer, David 3 ; Kowalczyk, Michał 4 ; Laurençot, Philippe 5 ; Lisini, Stefano 6

1 TSE (GREMAQ, Université Toulouse 1 Capitole), 21 Allée de Brienne, 31015 Toulouse cedex 6, France.
2 Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
3 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
4 Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile.
5 Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, 31062 Toulouse cedex 9, France.
6 Università degli Studi di Pavia, Dipartimento di Matematica “F. Casorati”, via Ferrata 1, 27100 Pavia, Italy.
@article{M2AN_2015__49_6_1553_0,
     author = {Blanchet, Adrien and Carrillo, Jos\'e Antonio and Kinderlehrer, David and Kowalczyk, Micha{\l} and Lauren\c{c}ot, Philippe and Lisini, Stefano},
     title = {A hybrid variational principle for the {Keller{\textendash}Segel} system in $\mathbb{R}^{2}$},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1553--1576},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {6},
     year = {2015},
     doi = {10.1051/m2an/2015021},
     mrnumber = {3423264},
     zbl = {1334.35086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015021/}
}
TY  - JOUR
AU  - Blanchet, Adrien
AU  - Carrillo, José Antonio
AU  - Kinderlehrer, David
AU  - Kowalczyk, Michał
AU  - Laurençot, Philippe
AU  - Lisini, Stefano
TI  - A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1553
EP  - 1576
VL  - 49
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015021/
DO  - 10.1051/m2an/2015021
LA  - en
ID  - M2AN_2015__49_6_1553_0
ER  - 
%0 Journal Article
%A Blanchet, Adrien
%A Carrillo, José Antonio
%A Kinderlehrer, David
%A Kowalczyk, Michał
%A Laurençot, Philippe
%A Lisini, Stefano
%T A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1553-1576
%V 49
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015021/
%R 10.1051/m2an/2015021
%G en
%F M2AN_2015__49_6_1553_0
Blanchet, Adrien; Carrillo, José Antonio; Kinderlehrer, David; Kowalczyk, Michał; Laurençot, Philippe; Lisini, Stefano. A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1553-1576. doi: 10.1051/m2an/2015021

Cité par Sources :