Voir la notice de l'article provenant de la source Numdam
We construct weak global in time solutions to the classical Keller–Segel system describing cell movement by chemotaxis in two dimensions when the total mass is below the established critical value. Our construction takes advantage of the fact that the Keller–Segel system can be realized as a gradient flow in a suitable functional product space. This allows us to employ a hybrid variational principle which is a generalisation of the minimizing implicit scheme for Wasserstein distances introduced by [R. Jordan, D. Kinderlehrer and F. Otto, SIAM J. Math. Anal. 29 (1998) 1–17].
Blanchet, Adrien 1 ; Carrillo, José Antonio 2 ; Kinderlehrer, David 3 ; Kowalczyk, Michał 4 ; Laurençot, Philippe 5 ; Lisini, Stefano 6
@article{M2AN_2015__49_6_1553_0, author = {Blanchet, Adrien and Carrillo, Jos\'e Antonio and Kinderlehrer, David and Kowalczyk, Micha{\l} and Lauren\c{c}ot, Philippe and Lisini, Stefano}, title = {A hybrid variational principle for the {Keller{\textendash}Segel} system in $\mathbb{R}^{2}$}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1553--1576}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015021}, mrnumber = {3423264}, zbl = {1334.35086}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015021/} }
TY - JOUR AU - Blanchet, Adrien AU - Carrillo, José Antonio AU - Kinderlehrer, David AU - Kowalczyk, Michał AU - Laurençot, Philippe AU - Lisini, Stefano TI - A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$ JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1553 EP - 1576 VL - 49 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015021/ DO - 10.1051/m2an/2015021 LA - en ID - M2AN_2015__49_6_1553_0 ER -
%0 Journal Article %A Blanchet, Adrien %A Carrillo, José Antonio %A Kinderlehrer, David %A Kowalczyk, Michał %A Laurençot, Philippe %A Lisini, Stefano %T A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$ %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1553-1576 %V 49 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015021/ %R 10.1051/m2an/2015021 %G en %F M2AN_2015__49_6_1553_0
Blanchet, Adrien; Carrillo, José Antonio; Kinderlehrer, David; Kowalczyk, Michał; Laurençot, Philippe; Lisini, Stefano. A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1553-1576. doi: 10.1051/m2an/2015021
Cité par Sources :