A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1367-1398

Voir la notice de l'article provenant de la source Numdam

We analyze a posteriori error estimation and adaptive refinement algorithms for stochastic Galerkin Finite Element methods for countably-parametric, elliptic boundary value problems. A residual error estimator which separates the effects of gpc-Galerkin discretization in parameter space and of the Finite Element discretization in physical space in energy norm is established. It is proved that the adaptive algorithm converges. To this end, a contraction property of its iterates is proved. It is shown that the sequences of triangulations which are produced by the algorithm in the FE discretization of the active gpc coefficients are asymptotically optimal. Numerical experiments illustrate the theoretical results.

Reçu le :
DOI : 10.1051/m2an/2015017
Classification : 65N30, 35R60, 47B80, 60H35, 65C20, 65N12, 65N22, 65J10
Keywords: Partial differential equations with random coefficients, generalized polynomial chaos, adaptive finite element methods, contraction property, residuala posteriori error estimation, uncertainty quantification

Eigel, Martin 1 ; Gittelson, Claude Jeffrey 2 ; Schwab, Christoph 3 ; Zander, Elmar 4

1 Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin, Germany.
2 Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, USA.
3 Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland.
4 Institute of Scientific Computing, Technical University Braunschweig, 38092 Braunschweig, Germany.
@article{M2AN_2015__49_5_1367_0,
     author = {Eigel, Martin and Gittelson, Claude Jeffrey and Schwab, Christoph and Zander, Elmar},
     title = {A convergent adaptive stochastic {Galerkin} finite element method with quasi-optimal spatial meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1367--1398},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {5},
     year = {2015},
     doi = {10.1051/m2an/2015017},
     mrnumber = {3423228},
     zbl = {1335.65006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015017/}
}
TY  - JOUR
AU  - Eigel, Martin
AU  - Gittelson, Claude Jeffrey
AU  - Schwab, Christoph
AU  - Zander, Elmar
TI  - A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1367
EP  - 1398
VL  - 49
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015017/
DO  - 10.1051/m2an/2015017
LA  - en
ID  - M2AN_2015__49_5_1367_0
ER  - 
%0 Journal Article
%A Eigel, Martin
%A Gittelson, Claude Jeffrey
%A Schwab, Christoph
%A Zander, Elmar
%T A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1367-1398
%V 49
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015017/
%R 10.1051/m2an/2015017
%G en
%F M2AN_2015__49_5_1367_0
Eigel, Martin; Gittelson, Claude Jeffrey; Schwab, Christoph; Zander, Elmar. A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1367-1398. doi: 10.1051/m2an/2015017

Cité par Sources :