An augmented mixed-primal finite element method for a coupled flow-transport problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1399-1427

Voir la notice de l'article provenant de la source Numdam

In this paper we analyze the coupling of a scalar nonlinear convection-diffusion problem with the Stokes equations where the viscosity depends on the distribution of the solution to the transport problem. An augmented variational approach for the fluid flow coupled with a primal formulation for the transport model is proposed. The resulting Galerkin scheme yields an augmented mixed-primal finite element method employing Raviart−Thomas spaces of order k for the Cauchy stress, and continuous piecewise polynomials of degree k+1 for the velocity and also for the scalar field. The classical Schauder and Brouwer fixed point theorems are utilized to establish existence of solution of the continuous and discrete formulations, respectively. In turn, suitable estimates arising from the connection between a regularity assumption and the Sobolev embedding and Rellich−Kondrachov compactness theorems, are also employed in the continuous analysis. Then, sufficiently small data allow us to prove uniqueness and to derive optimal a priori error estimates. Finally, we report a few numerical tests confirming the predicted rates of convergence, and illustrating the performance of a linearized method based on Newton−Raphson iterations; and we apply the proposed framework in the simulation of thermal convection and sedimentation-consolidation processes.

DOI : 10.1051/m2an/2015015
Classification : 65N30, 65N12, 76R05, 76D07, 65N15
Keywords: Stokes equations, nonlinear transport problem, augmented mixed-primal formulation, fixed point theory, thermal convection, sedimentation-consolidation process, finite element methods, a priori error analysis

Alvarez, Mario 1, 2 ; Gatica, Gabriel N. 2 ; Ruiz–Baier, Ricardo 3

1 Sección de Matemática, Sede Occidente, Universidad de Costa Rica, San Ramón de Alajuela, Costa Rica
2 CI2 MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
3 Institute of Earth Sciences, Géopolis UNIL-Mouline, University of Lausanne, 1015 Lausanne, Switzerland
@article{M2AN_2015__49_5_1399_0,
     author = {Alvarez, Mario and Gatica, Gabriel N. and Ruiz{\textendash}Baier, Ricardo},
     title = {An augmented mixed-primal finite element method for a coupled flow-transport problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1399--1427},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {5},
     year = {2015},
     doi = {10.1051/m2an/2015015},
     mrnumber = {3423229},
     zbl = {1329.76157},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015015/}
}
TY  - JOUR
AU  - Alvarez, Mario
AU  - Gatica, Gabriel N.
AU  - Ruiz–Baier, Ricardo
TI  - An augmented mixed-primal finite element method for a coupled flow-transport problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1399
EP  - 1427
VL  - 49
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015015/
DO  - 10.1051/m2an/2015015
LA  - en
ID  - M2AN_2015__49_5_1399_0
ER  - 
%0 Journal Article
%A Alvarez, Mario
%A Gatica, Gabriel N.
%A Ruiz–Baier, Ricardo
%T An augmented mixed-primal finite element method for a coupled flow-transport problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1399-1427
%V 49
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015015/
%R 10.1051/m2an/2015015
%G en
%F M2AN_2015__49_5_1399_0
Alvarez, Mario; Gatica, Gabriel N.; Ruiz–Baier, Ricardo. An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1399-1427. doi: 10.1051/m2an/2015015

Cité par Sources :