A Finite Element Method with Singularity Reconstruction for Fractional Boundary Value Problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1261-1283

Voir la notice de l'article provenant de la source Numdam

We consider a two-point boundary value problem involving a Riemann−Liouville fractional derivative of order α(1,2) in the leading term on the unit interval (0,1). The standard Galerkin finite element method can only give a low-order convergence even if the source term is very smooth due to the presence of the singularity term x α-1 in the solution representation. In order to enhance the convergence, we develop a simple singularity reconstruction strategy by splitting the solution into a singular part and a regular part, where the former captures explicitly the singularity. We derive a new variational formulation for the regular part, and show that the Galerkin approximation of the regular part can achieve a better convergence order in the L 2 (0,1), H α/2 (0,1) and L (0,1)-norms than the standard Galerkin approach, with a convergence rate for the recovered singularity strength identical with the L 2 (0,1) error estimate. The reconstruction approach is very flexible in handling explicit singularity, and it is further extended to the case of a Neumann type boundary condition on the left end point, which involves a strong singularity x α-2 . Extensive numerical results confirm the theoretical study and efficiency of the proposed approach.

Reçu le :
DOI : 10.1051/m2an/2015010
Classification : 65M60, 65N30, 45J05
Keywords: Finite element method, Riemann−Liouville derivative, fractional boundary value problem, error estimate, singularity reconstruction

Jin, Bangti 1 ; Zhou, Zhi 2

1 Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK.
2 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA.
@article{M2AN_2015__49_5_1261_0,
     author = {Jin, Bangti and Zhou, Zhi},
     title = {A {Finite} {Element} {Method} with {Singularity} {Reconstruction} for {Fractional} {Boundary} {Value} {Problems}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1261--1283},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {5},
     year = {2015},
     doi = {10.1051/m2an/2015010},
     zbl = {1332.65115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015010/}
}
TY  - JOUR
AU  - Jin, Bangti
AU  - Zhou, Zhi
TI  - A Finite Element Method with Singularity Reconstruction for Fractional Boundary Value Problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1261
EP  - 1283
VL  - 49
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015010/
DO  - 10.1051/m2an/2015010
LA  - en
ID  - M2AN_2015__49_5_1261_0
ER  - 
%0 Journal Article
%A Jin, Bangti
%A Zhou, Zhi
%T A Finite Element Method with Singularity Reconstruction for Fractional Boundary Value Problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1261-1283
%V 49
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015010/
%R 10.1051/m2an/2015010
%G en
%F M2AN_2015__49_5_1261_0
Jin, Bangti; Zhou, Zhi. A Finite Element Method with Singularity Reconstruction for Fractional Boundary Value Problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1261-1283. doi: 10.1051/m2an/2015010

Cité par Sources :