Voir la notice de l'article provenant de la source Numdam
In this work, we introduce a discrete specific inf-sup condition to estimate the norm, , of the pressure in a number of fluid flows. It applies to projection-based stabilized finite element discretizations of incompressible flows, typically when the velocity field has a low regularity. We derive two versions of this inf-sup condition: The first one holds on shape-regular meshes and the second one on quasi-uniform meshes. As an application, we derive reduced inf-sup conditions for the linearized Primitive equations of the Ocean that apply to the surface pressure in weighted norm. This allows to prove the stability and convergence of quite general stabilized discretizations of these equations: SUPG, Least Squares, Adjoint-stabilized and OSS discretizations.
Rebollo, Tomás Chacón 1 ; Girault, Vivette 2 ; Mármol, Macarena Gómez 3 ; Muñoz, Isabel Sánchez 4
@article{M2AN_2015__49_4_1219_0, author = {Rebollo, Tom\'as Chac\'on and Girault, Vivette and M\'armol, Macarena G\'omez and Mu\~noz, Isabel S\'anchez}, title = {A reduced discrete inf-sup condition in $L^{p}$ for incompressible flows and application}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1219--1238}, publisher = {EDP-Sciences}, volume = {49}, number = {4}, year = {2015}, doi = {10.1051/m2an/2015008}, mrnumber = {3371909}, zbl = {1321.35154}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015008/} }
TY - JOUR AU - Rebollo, Tomás Chacón AU - Girault, Vivette AU - Mármol, Macarena Gómez AU - Muñoz, Isabel Sánchez TI - A reduced discrete inf-sup condition in $L^{p}$ for incompressible flows and application JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1219 EP - 1238 VL - 49 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015008/ DO - 10.1051/m2an/2015008 LA - en ID - M2AN_2015__49_4_1219_0 ER -
%0 Journal Article %A Rebollo, Tomás Chacón %A Girault, Vivette %A Mármol, Macarena Gómez %A Muñoz, Isabel Sánchez %T A reduced discrete inf-sup condition in $L^{p}$ for incompressible flows and application %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1219-1238 %V 49 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015008/ %R 10.1051/m2an/2015008 %G en %F M2AN_2015__49_4_1219_0
Rebollo, Tomás Chacón; Girault, Vivette; Mármol, Macarena Gómez; Muñoz, Isabel Sánchez. A reduced discrete inf-sup condition in $L^{p}$ for incompressible flows and application. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1219-1238. doi: 10.1051/m2an/2015008
Cité par Sources :