Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1063-1084

Voir la notice de l'article provenant de la source Numdam

Symmetric, unconditionnaly coercive schemes for the discretization of heterogeneous and anisotropic diffusion problems on general, possibly nonconforming meshes are developed and studied. These schemes are a further generalization of the Hybrid Mixed Method, which allows to use a general class of consistent gradients to construct them. While the schemes are in principle hybrid, many discrete gradients or the use of correct interpolation allow to eliminate the additional face unknowns. Convergence of the approximate solutions to minimal regularity solutions is proved for general tensors and meshes. Error estimates are derived under classical regularity assumptions. Numerical results illustrate the performance of the schemes.

Reçu le :
DOI : 10.1051/m2an/2015005
Classification : 65N08, 65N12, 65N15
Keywords: Heterogeneous diffusion problems, cell-centered methods, hybrid finite volumes, general meshes

Coatléven, Julien 1

1 IFP Énergies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
@article{M2AN_2015__49_4_1063_0,
     author = {Coatl\'even, Julien},
     title = {Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1063--1084},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {4},
     year = {2015},
     doi = {10.1051/m2an/2015005},
     mrnumber = {3371904},
     zbl = {1327.65206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015005/}
}
TY  - JOUR
AU  - Coatléven, Julien
TI  - Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1063
EP  - 1084
VL  - 49
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015005/
DO  - 10.1051/m2an/2015005
LA  - en
ID  - M2AN_2015__49_4_1063_0
ER  - 
%0 Journal Article
%A Coatléven, Julien
%T Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1063-1084
%V 49
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015005/
%R 10.1051/m2an/2015005
%G en
%F M2AN_2015__49_4_1063_0
Coatléven, Julien. Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1063-1084. doi: 10.1051/m2an/2015005

Cité par Sources :