A priori error estimates to smooth solutions of the third order Runge–Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 991-1018

Voir la notice de l'article provenant de la source Numdam

In this paper we present an a priori error estimate of the Runge–Kutta discontinuous Galerkin method for solving symmetrizable conservation laws, where the time is discretized with the third order explicit total variation diminishing Runge–Kutta method and the finite element space is made up of piecewise polynomials of degree k2. Quasi-optimal error estimate is obtained by energy techniques, for the so-called generalized E-fluxes under the standard temporal-spatial CFL condition τγh, where h is the element length and τ is time step, and γ is a positive constant independent of h and τ. Optimal estimates are also considered when the upwind numerical flux is used.

Reçu le :
DOI : 10.1051/m2an/2014063
Classification : 65M60, 65M12
Keywords: Discontinuous Galerkin method, Runge–Kutta method, error estimates, symmetrizable system of conservation laws, energy analysis

Luo, Juan 1 ; Shu, Chi-Wang 2 ; Zhang, Qiang 1

1 Department of Mathematics, Nanjing University, Nanjing, 210093, Jiangsu Province, P.R. China
2 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
@article{M2AN_2015__49_4_991_0,
     author = {Luo, Juan and Shu, Chi-Wang and Zhang, Qiang},
     title = {A priori error estimates to smooth solutions of the third order {Runge{\textendash}Kutta} discontinuous {Galerkin} method for symmetrizable systems of conservation laws},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {991--1018},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {4},
     year = {2015},
     doi = {10.1051/m2an/2014063},
     mrnumber = {3371901},
     zbl = {1327.65193},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014063/}
}
TY  - JOUR
AU  - Luo, Juan
AU  - Shu, Chi-Wang
AU  - Zhang, Qiang
TI  - A priori error estimates to smooth solutions of the third order Runge–Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 991
EP  - 1018
VL  - 49
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014063/
DO  - 10.1051/m2an/2014063
LA  - en
ID  - M2AN_2015__49_4_991_0
ER  - 
%0 Journal Article
%A Luo, Juan
%A Shu, Chi-Wang
%A Zhang, Qiang
%T A priori error estimates to smooth solutions of the third order Runge–Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 991-1018
%V 49
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014063/
%R 10.1051/m2an/2014063
%G en
%F M2AN_2015__49_4_991_0
Luo, Juan; Shu, Chi-Wang; Zhang, Qiang. A priori error estimates to smooth solutions of the third order Runge–Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 991-1018. doi: 10.1051/m2an/2014063

Cité par Sources :