An a posteriori error estimation for the discrete duality finite volume discretization of the Stokes equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 663-693

Voir la notice de l'article provenant de la source Numdam

We derive an a posteriori error estimation for the discrete duality finite volume (DDFV) discretization of the stationary Stokes equations on very general twodimensional meshes, when a penalty term is added in the incompressibility equation to stabilize the variational formulation. Two different estimators are provided: one for the error on the velocity and one for the error on the pressure. They both include a contribution related to the error due to the stabilization of the scheme, and a contribution due to the discretization itself. The estimators are globally upper as well as locally lower bounds for the errors of the DDFV discretization. They are fully computable as soon as a lower bound for the inf-sup constant is available. Numerical experiments illustrate the theoretical results and we especially consider the influence of the penalty parameter on the error for a fixed mesh and also of the mesh size for a fixed value of the penalty parameter. A global error reducing strategy that mixes the decrease of the penalty parameter and adaptive mesh refinement is described.

DOI : 10.1051/m2an/2014057
Classification : 65N08, 65N15, 76D07
Keywords: Finite volumes, discrete duality, a posteriori error estimation, Stokes equations, stabilization

Le, Anh Ha 1 ; Omnes, Pascal 1, 2

1 CEA, DEN, DM2S-STMF, 91191 Gif-sur-Yvette cedex, France.
2 Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, 99, Avenue J.-B. Clément 93430 Villetaneuse cedex, France.
@article{M2AN_2015__49_3_663_0,
     author = {Le, Anh Ha and Omnes, Pascal},
     title = {An a posteriori error estimation for the discrete duality finite volume discretization of the {Stokes} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {663--693},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {3},
     year = {2015},
     doi = {10.1051/m2an/2014057},
     zbl = {1321.76046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014057/}
}
TY  - JOUR
AU  - Le, Anh Ha
AU  - Omnes, Pascal
TI  - An a posteriori error estimation for the discrete duality finite volume discretization of the Stokes equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 663
EP  - 693
VL  - 49
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014057/
DO  - 10.1051/m2an/2014057
LA  - en
ID  - M2AN_2015__49_3_663_0
ER  - 
%0 Journal Article
%A Le, Anh Ha
%A Omnes, Pascal
%T An a posteriori error estimation for the discrete duality finite volume discretization of the Stokes equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 663-693
%V 49
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014057/
%R 10.1051/m2an/2014057
%G en
%F M2AN_2015__49_3_663_0
Le, Anh Ha; Omnes, Pascal. An a posteriori error estimation for the discrete duality finite volume discretization of the Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 663-693. doi: 10.1051/m2an/2014057

Cité par Sources :