High order numerical methods for highly oscillatory problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 695-711

Voir la notice de l'article provenant de la source Numdam

This paper is concerned with the numerical solution of nonlinear Hamiltonian highly oscillatory systems of second-order differential equations of a special form. We present numerical methods of high asymptotic as well as time stepping order based on the modulated Fourier expansion of the exact solution. In particular we obtain time stepping orders higher than 2 with only a finite energy assumption on the initial values of the problem. In addition, the stepsize of these new numerical integrators is not restricted by the high frequency of the problem. Furthermore, numerical experiments on the modified Fermi–Pasta–Ulam problem as well as on a one dimensional model of a diatomic gas with short-range interaction forces support our investigations.

Reçu le :
DOI : 10.1051/m2an/2014056
Classification : 34E05, 34E13, 65L20, 65P10
Keywords: Highly oscillatory differential equations, multiple time scales, Fermi–Pasta–Ulam problem, modulated Fourier expansions, high order numerical schemes, adiabatic invariants

Cohen, David 1 ; Schweitzer, Julia 2

1 Matematik och matematisk statistik, Umeå universitet, 90187 Umeå, Sweden.
2 Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für Technologie, 76128 Karlsruhe, Germany.
@article{M2AN_2015__49_3_695_0,
     author = {Cohen, David and Schweitzer, Julia},
     title = {High order numerical methods for highly oscillatory problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {695--711},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {3},
     year = {2015},
     doi = {10.1051/m2an/2014056},
     zbl = {1317.34137},
     mrnumber = {3342224},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014056/}
}
TY  - JOUR
AU  - Cohen, David
AU  - Schweitzer, Julia
TI  - High order numerical methods for highly oscillatory problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 695
EP  - 711
VL  - 49
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014056/
DO  - 10.1051/m2an/2014056
LA  - en
ID  - M2AN_2015__49_3_695_0
ER  - 
%0 Journal Article
%A Cohen, David
%A Schweitzer, Julia
%T High order numerical methods for highly oscillatory problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 695-711
%V 49
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014056/
%R 10.1051/m2an/2014056
%G en
%F M2AN_2015__49_3_695_0
Cohen, David; Schweitzer, Julia. High order numerical methods for highly oscillatory problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 695-711. doi: 10.1051/m2an/2014056

Cité par Sources :