The dispersive wave dynamics of a two-phase flow relaxation model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 601-619

Voir la notice de l'article provenant de la source Numdam

We consider a general Euler-type two-phase flow model with relaxation towards phase equilibrium. We provide a complete description of the transition between the wave dynamics of the homogeneous relaxation system and that of the local equilibrium approximation. In particular, we present generally valid analytical expressions for the amplifications and velocities of each Fourier component. This transitional wave dynamics is fully determined by only two dimensionless parameters; a stiffness parameter and the ratio of the sound velocities in the stiff and non-stiff limits. A direct calculation verifies that the stability criterion is precisely the subcharacteristic condition. We further prove a maximum principle in the transitional regime, similar in spirit to the subcharacteristic condition; the transitional wave speeds can never exceed the largest wave speed of the homogeneous relaxation system. Finally, we identify the existence of a critical region of wave numbers where the sonic waves completely disappear from the system. This region corresponds to the casus irreducibilis of the describing cubic polynomial.

Reçu le :
DOI : 10.1051/m2an/2014048
Classification : 35L65, 15A18, 76T10
Keywords: Relaxation, subcharacteristic condition, phase transfer

Solem, Susanne 1 ; Aursand, Peder 1 ; Flåtten, Tore 2

1 Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
2 SINTEF Materials and Chemistry, P. O. Box 4760 Sluppen, NO-7465 Trondheim, Norway
@article{M2AN_2015__49_2_601_0,
     author = {Solem, Susanne and Aursand, Peder and Fl\r{a}tten, Tore},
     title = {The dispersive wave dynamics of a two-phase flow relaxation model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {601--619},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/m2an/2014048},
     mrnumber = {3342220},
     zbl = {1316.35193},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014048/}
}
TY  - JOUR
AU  - Solem, Susanne
AU  - Aursand, Peder
AU  - Flåtten, Tore
TI  - The dispersive wave dynamics of a two-phase flow relaxation model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 601
EP  - 619
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014048/
DO  - 10.1051/m2an/2014048
LA  - en
ID  - M2AN_2015__49_2_601_0
ER  - 
%0 Journal Article
%A Solem, Susanne
%A Aursand, Peder
%A Flåtten, Tore
%T The dispersive wave dynamics of a two-phase flow relaxation model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 601-619
%V 49
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014048/
%R 10.1051/m2an/2014048
%G en
%F M2AN_2015__49_2_601_0
Solem, Susanne; Aursand, Peder; Flåtten, Tore. The dispersive wave dynamics of a two-phase flow relaxation model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 601-619. doi: 10.1051/m2an/2014048

Cité par Sources :