Residual a posteriori error estimation for the Virtual Element Method for elliptic problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 577-599

Voir la notice de l'article provenant de la source Numdam

A posteriori error estimation and adaptivity are very useful in the context of the virtual element and mimetic discretization methods due to the flexibility of the meshes to which these numerical schemes can be applied. Nevertheless, developing error estimators for virtual and mimetic methods is not a straightforward task due to the lack of knowledge of the basis functions. In the new virtual element setting, we develop a residual based a posteriori error estimator for the Poisson problem with (piecewise) constant coefficients, that is proven to be reliable and efficient. We moreover show the numerical performance of the proposed estimator when it is combined with an adaptive strategy for the mesh refinement.

Reçu le :
DOI : 10.1051/m2an/2014047
Classification : 65N30
Keywords: A posteriori error estimation, virtual element method, polygonal mesh, high-order scheme

Beirão da Veiga, L. 1 ; Manzini, G. 2, 3

1 Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, via Saldini 50, 20133 Milano, Italy
2 Applied Mathematics and Plasma Physics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3 IMATI del CNR, via Ferrata 1, 27100 Pavia, Italy
@article{M2AN_2015__49_2_577_0,
     author = {Beir\~ao da Veiga, L. and Manzini, G.},
     title = {Residual a posteriori error estimation for the {Virtual} {Element} {Method} for elliptic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {577--599},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/m2an/2014047},
     mrnumber = {3342219},
     zbl = {1346.65056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014047/}
}
TY  - JOUR
AU  - Beirão da Veiga, L.
AU  - Manzini, G.
TI  - Residual a posteriori error estimation for the Virtual Element Method for elliptic problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 577
EP  - 599
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014047/
DO  - 10.1051/m2an/2014047
LA  - en
ID  - M2AN_2015__49_2_577_0
ER  - 
%0 Journal Article
%A Beirão da Veiga, L.
%A Manzini, G.
%T Residual a posteriori error estimation for the Virtual Element Method for elliptic problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 577-599
%V 49
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014047/
%R 10.1051/m2an/2014047
%G en
%F M2AN_2015__49_2_577_0
Beirão da Veiga, L.; Manzini, G. Residual a posteriori error estimation for the Virtual Element Method for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 577-599. doi: 10.1051/m2an/2014047

Cité par Sources :