A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 503-528

Voir la notice de l'article provenant de la source Numdam

In a previous paper [F. Chouly, P. Hild and Y. Renard, A Nitsche finite element method for dynamic contact. 1. Space semi-discretization and time-marching schemes. ESAIM: M2AN 49 (2015) 481–502.], we adapted Nitsche’s method to the approximation of the linear elastodynamic unilateral contact problem. The space semi-discrete problem was analyzed and some schemes (θ-scheme, Newmark and a new hybrid scheme) were proposed and proved to be well-posed under appropriate CFL conditions. In the present paper we look at the stability properties of the above-mentioned schemes and we proceed to the corresponding numerical experiments. In particular we prove and illustrate numerically some interesting stability and (almost) energy conservation properties of Nitsche’s semi-discretization combined to the new hybrid scheme.

Reçu le :
DOI : 10.1051/m2an/2014046
Classification : 65N12, 65N30, 74M15
Keywords: Unilateral contact, elastodynamics, Nitsche’s method, time-marching schemes, stability

Chouly, Franz 1 ; Hild, Patrick 2 ; Renard, Yves 3

1 Laboratoire de Mathématiques de Besançon – UMR CNRS 6623, Université de Franche Comté, 16 route de Gray, 25030 Besançon cedex, France
2 Institut de Mathématiques de Toulouse - UMR CNRS 5219, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
3 Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, 69621 Villeurbanne, France
@article{M2AN_2015__49_2_503_0,
     author = {Chouly, Franz and Hild, Patrick and Renard, Yves},
     title = {A {Nitsche} finite element method for dynamic contact: 2. {Stability} of the schemes and numerical experiments},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {503--528},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/m2an/2014046},
     zbl = {1311.74114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014046/}
}
TY  - JOUR
AU  - Chouly, Franz
AU  - Hild, Patrick
AU  - Renard, Yves
TI  - A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 503
EP  - 528
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014046/
DO  - 10.1051/m2an/2014046
LA  - en
ID  - M2AN_2015__49_2_503_0
ER  - 
%0 Journal Article
%A Chouly, Franz
%A Hild, Patrick
%A Renard, Yves
%T A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 503-528
%V 49
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014046/
%R 10.1051/m2an/2014046
%G en
%F M2AN_2015__49_2_503_0
Chouly, Franz; Hild, Patrick; Renard, Yves. A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 503-528. doi: 10.1051/m2an/2014046

Cité par Sources :