A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 481-502

Voir la notice de l'article provenant de la source Numdam

This paper presents a new approximation of elastodynamic frictionless contact problems based both on the finite element method and on an adaptation of Nitsche’s method which was initially designed for Dirichlet’s condition. A main interesting characteristic is that this approximation produces well-posed space semi-discretizations contrary to standard finite element discretizations. This paper is then mainly devoted to present an analysis of the space semi-discretization in terms of consistency, well-posedness and energy conservation, and also to study the well-posedness of some time-marching schemes (θ-scheme, Newmark and a new hybrid scheme). The stability properties of the schemes and the corresponding numerical experiments can be found in a second paper [F. Chouly, P. Hild and Y. Renard, A Nitsche finite element method for dynamic contact. 2. Stability analysis and numerical experiments. ESAIM: M2AN 49 (2015) 503–528.].

Reçu le :
DOI : 10.1051/m2an/2014041
Classification : 65N12, 65N30, 74M15
Keywords: Unilateral contact, elastodynamics, finite elements, Nitsche’s method, time-marching schemes, stability

Chouly, Franz 1 ; Hild, Patrick 2 ; Renard, Yves 3

1 Laboratoire de Mathématiques de Besançon – UMR CNRS 6623, Université de Franche Comté, 16 route de Gray, 25030 Besançon cedex, France
2 Institut de Mathématiques de Toulouse – UMR CNRS 5219, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
3 Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, 69621 Villeurbanne, France
@article{M2AN_2015__49_2_481_0,
     author = {Chouly, Franz and Hild, Patrick and Renard, Yves},
     title = {A {Nitsche} finite element method for dynamic contact: 1. {Space} semi-discretization and time-marching schemes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {481--502},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/m2an/2014041},
     zbl = {1311.74113},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014041/}
}
TY  - JOUR
AU  - Chouly, Franz
AU  - Hild, Patrick
AU  - Renard, Yves
TI  - A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 481
EP  - 502
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014041/
DO  - 10.1051/m2an/2014041
LA  - en
ID  - M2AN_2015__49_2_481_0
ER  - 
%0 Journal Article
%A Chouly, Franz
%A Hild, Patrick
%A Renard, Yves
%T A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 481-502
%V 49
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014041/
%R 10.1051/m2an/2014041
%G en
%F M2AN_2015__49_2_481_0
Chouly, Franz; Hild, Patrick; Renard, Yves. A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 481-502. doi: 10.1051/m2an/2014041

Cité par Sources :