Voir la notice de l'article provenant de la source Numdam
This paper presents a new approximation of elastodynamic frictionless contact problems based both on the finite element method and on an adaptation of Nitsche’s method which was initially designed for Dirichlet’s condition. A main interesting characteristic is that this approximation produces well-posed space semi-discretizations contrary to standard finite element discretizations. This paper is then mainly devoted to present an analysis of the space semi-discretization in terms of consistency, well-posedness and energy conservation, and also to study the well-posedness of some time-marching schemes (-scheme, Newmark and a new hybrid scheme). The stability properties of the schemes and the corresponding numerical experiments can be found in a second paper [F. Chouly, P. Hild and Y. Renard, A Nitsche finite element method for dynamic contact. 2. Stability analysis and numerical experiments. ESAIM: M2AN 49 (2015) 503–528.].
Chouly, Franz 1 ; Hild, Patrick 2 ; Renard, Yves 3
@article{M2AN_2015__49_2_481_0, author = {Chouly, Franz and Hild, Patrick and Renard, Yves}, title = {A {Nitsche} finite element method for dynamic contact: 1. {Space} semi-discretization and time-marching schemes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {481--502}, publisher = {EDP-Sciences}, volume = {49}, number = {2}, year = {2015}, doi = {10.1051/m2an/2014041}, zbl = {1311.74113}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014041/} }
TY - JOUR AU - Chouly, Franz AU - Hild, Patrick AU - Renard, Yves TI - A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 481 EP - 502 VL - 49 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014041/ DO - 10.1051/m2an/2014041 LA - en ID - M2AN_2015__49_2_481_0 ER -
%0 Journal Article %A Chouly, Franz %A Hild, Patrick %A Renard, Yves %T A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 481-502 %V 49 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014041/ %R 10.1051/m2an/2014041 %G en %F M2AN_2015__49_2_481_0
Chouly, Franz; Hild, Patrick; Renard, Yves. A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 481-502. doi: 10.1051/m2an/2014041
Cité par Sources :