Discretized fractional substantial calculus
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 373-394

Voir la notice de l'article provenant de la source Numdam

This paper discusses the properties and the numerical discretizations of the fractional substantial integral

I s ν f(x)=1 Γ(ν) a x x-τ ν-1 e -σ(x-τ) f(τ)dτ,ν>0,
and the fractional substantial derivative
D s μ f(x)=D s m [I s ν f(x)],ν=m-μ,
where D s = x+σ=D+σ, σ can be a constant or a function not related to x, say σ(y); and m is the smallest integer that exceeds μ. The Fourier transform method and fractional linear multistep method are used to analyze the properties or derive the discretized schemes. And the convergences of the presented discretized schemes with the global truncation error 𝒪(h p )(p=1,2,3,4,5) are theoretically proved and numerically verified.

Reçu le :
DOI : 10.1051/m2an/2014037
Classification : 26A33, 65L06, 42A38, 65M12
Keywords: Fractional substantial calculus, fractional linear multistep methods, fourier transform, stability and convergence

Chen, Minghua 1 ; Deng, Weihua 1

1 School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P.R. China
@article{M2AN_2015__49_2_373_0,
     author = {Chen, Minghua and Deng, Weihua},
     title = {Discretized fractional substantial calculus},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {373--394},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/m2an/2014037},
     zbl = {1314.26007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014037/}
}
TY  - JOUR
AU  - Chen, Minghua
AU  - Deng, Weihua
TI  - Discretized fractional substantial calculus
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 373
EP  - 394
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014037/
DO  - 10.1051/m2an/2014037
LA  - en
ID  - M2AN_2015__49_2_373_0
ER  - 
%0 Journal Article
%A Chen, Minghua
%A Deng, Weihua
%T Discretized fractional substantial calculus
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 373-394
%V 49
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014037/
%R 10.1051/m2an/2014037
%G en
%F M2AN_2015__49_2_373_0
Chen, Minghua; Deng, Weihua. Discretized fractional substantial calculus. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 373-394. doi: 10.1051/m2an/2014037

Cité par Sources :