On the Numerical Integration of Scalar Nonlocal Conservation Laws
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 19-37

Voir la notice de l'article provenant de la source Numdam

We study a rather general class of 1D nonlocal conservation laws from a numerical point of view. First, following [F. Betancourt, R. Bürger, K.H. Karlsen and E.M. Tory, On nonlocal conservation laws modelling sedimentation. Nonlinearity 24 (2011) 855–885], we define an algorithm to numerically integrate them and prove its convergence. Then, we use this algorithm to investigate various analytical properties, obtaining evidence that usual properties of standard conservation laws fail in the nonlocal setting. Moreover, on the basis of our numerical integrations, we are led to conjecture the convergence of the nonlocal equation to the local ones, although no analytical results are, to our knowledge, available in this context.

DOI : 10.1051/m2an/2014023
Classification : 35L65
Keywords: Nonlocal conservation laws, Lax Friedrichs scheme

Amorim, Paulo 1 ; Colombo, Rinaldo M. 2 ; Teixeira, Andreia 3

1 Instituto de Matemática, Universidade Federal do Rio de Janeiro, C.P. 68530, Cidade Universitária 21945–970, Rio de Janeiro, Brazil.
2 Unità INdAM, Università di Brescia, Via Branze 38, 25123 Brescia, Italy.
3 Centro de Matemática e Aplicações Fundamentais, Departamento de Matemática, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal.
@article{M2AN_2015__49_1_19_0,
     author = {Amorim, Paulo and Colombo, Rinaldo M. and Teixeira, Andreia},
     title = {On the {Numerical} {Integration} of {Scalar} {Nonlocal} {Conservation} {Laws}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {19--37},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/m2an/2014023},
     mrnumber = {3342191},
     zbl = {1317.65165},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014023/}
}
TY  - JOUR
AU  - Amorim, Paulo
AU  - Colombo, Rinaldo M.
AU  - Teixeira, Andreia
TI  - On the Numerical Integration of Scalar Nonlocal Conservation Laws
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 19
EP  - 37
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014023/
DO  - 10.1051/m2an/2014023
LA  - en
ID  - M2AN_2015__49_1_19_0
ER  - 
%0 Journal Article
%A Amorim, Paulo
%A Colombo, Rinaldo M.
%A Teixeira, Andreia
%T On the Numerical Integration of Scalar Nonlocal Conservation Laws
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 19-37
%V 49
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014023/
%R 10.1051/m2an/2014023
%G en
%F M2AN_2015__49_1_19_0
Amorim, Paulo; Colombo, Rinaldo M.; Teixeira, Andreia. On the Numerical Integration of Scalar Nonlocal Conservation Laws. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 19-37. doi: 10.1051/m2an/2014023

Cité par Sources :