Adaptive mesh refinement strategy for a non conservative transport problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1381-1412

Voir la notice de l'article provenant de la source Numdam

Long time simulations of transport equations raise computational challenges since they require both a large domain of calculation and sufficient accuracy. It is therefore advantageous, in terms of computational costs, to use a time varying adaptive mesh, with small cells in the region of interest and coarser cells where the solution is smooth. Biological models involving cell dynamics fall for instance within this framework and are often non conservative to account for cell division. In that case the threshold controlling the spatial adaptivity may have to be time-dependent in order to keep up with the progression of the solution. In this article we tackle the difficulties arising when applying a Multiresolution method to a transport equation with discontinuous fluxes modeling localized mitosis. The analysis of the numerical method is performed on a simplified model and numerical scheme. An original threshold strategy is proposed and validated thanks to extensive numerical tests. It is then applied to a biological model in both cases of distributed and localized mitosis.

DOI : 10.1051/m2an/2014014
Classification : 49M, 35L
Keywords: adaptive finite volumes, non conservative PDE, discontinuous flux
@article{M2AN_2014__48_5_1381_0,
     author = {Aymard, Benjamin and Cl\'ement, Fr\'ed\'erique and Postel, Marie},
     title = {Adaptive mesh refinement strategy for a non conservative transport problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1381--1412},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {5},
     year = {2014},
     doi = {10.1051/m2an/2014014},
     mrnumber = {3264358},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014014/}
}
TY  - JOUR
AU  - Aymard, Benjamin
AU  - Clément, Frédérique
AU  - Postel, Marie
TI  - Adaptive mesh refinement strategy for a non conservative transport problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 1381
EP  - 1412
VL  - 48
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014014/
DO  - 10.1051/m2an/2014014
LA  - en
ID  - M2AN_2014__48_5_1381_0
ER  - 
%0 Journal Article
%A Aymard, Benjamin
%A Clément, Frédérique
%A Postel, Marie
%T Adaptive mesh refinement strategy for a non conservative transport problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 1381-1412
%V 48
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014014/
%R 10.1051/m2an/2014014
%G en
%F M2AN_2014__48_5_1381_0
Aymard, Benjamin; Clément, Frédérique; Postel, Marie. Adaptive mesh refinement strategy for a non conservative transport problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1381-1412. doi: 10.1051/m2an/2014014

Cité par Sources :